

Fig. S1. Algorithm for HQEM. The steps of the HQEM algorithm is illustrated. The convergence is defined as the change in error is less than the specified tolerance, or the number of iterations exceeds the user specified maximum calculation steps.

Fig. S2. Comparison of the optimization performance of hybrid quasi ensemble modeling (HQEM) and general ensemble modeling (EM). The relative fitting error of the best estimated parameter set, calculated by dividing the average error of all the sampling parameter sets, is plotted against the sampling points number.

Fig. S3. Histogram plot of the values of 114 estimated ensemble parameter sets (34 parameters). The mean values for each parameter are marked in red lines (). The standard deviations for each parameter are marked in cyan lines (—). The parameter names for parameter ID are as follows:

ID	Name	ID	Name	ID	Name
1	kb_CyclinB_CDK1	13	kcat_AuroraAP_BoraPLK1	25	kb_AuroraAP_PLK1
2	kb_Wee1_CDK1B	14	kcat_AuroraAP_CDC25	26	kb_AuroraA_AuroraA
3	kb_CDC25_CDK1B	15	kcat_PLK1P_Wee1	27	kb_CDK1B_Wee1
4	kb_1433_CDC25	16	kcat_CDK1B_Wee1	28	kb_PLK1P_Bora
5	kb_CHK1_CDC25	17	kcat_CDC25_CDK1B	29	kb_PLK1P_CDC25
6	kcat_CHK1_CDC25	18	kcat_Wee1_CDK1B	30	kb_PLK1P_Claspin
7	kcat_PLK1P_Claspin	19	kb_CDK1B_CDC25	31	kb_PLK1P_Wee1
8	kcat_PLK1P_Bora	20	kcat_CDK1B_CDC25	32	kb_Claspin_CHK1
9	kb_Bora_PLK1	21	kcat_PLK1P_CDC25	33	kb_ATR_ClaspinCHK1
10	kcat_AuroraAP_PLK1	22	kb_AuroraAP_AuroraA	34	kcat_ATR_ClaspinCHK1
11	kcat_AuroraA_AuroraA	23	kb_AuroraAP_BoraPLK1		
12	kcat_AuroraAP_AuroraA	24	kb_AuroraAP_CDC25		

Fig. S4. Ensemble simulation results calculated based on the 114 parameter sets obtained by HQEM.

(A) Ensemble simulations of the influence of different amount of Aurora-A (*by altering the initial value of [AuroraA]*) to its own activation (*the amount of [AuroraA_pT288]*) and to the activation of Plk1 (*the amount of [PLK1_pT210]*) (corresponding to Fig. 3A).

(**B**,**C**) Ensemble simulated time courses of activated cyclin B/Cdk1 complex (*the amount of* [*CDK1_pT161:CyclinB]*) in response to different amount of (B) Aurora-A (*by altering the initial value of* [*AuroraA*]) and (C) Plk1 (*by altering the initial value of* [*PLK1*]) reveal the redundant function of Aurora-A and Plk1 during normal mitotic entry (corresponding to Fig. 4A, B).

(**D**,**E**) Ensemble simulated time courses of activated cyclin B/Cdk1 complex (*the amount of* [*CDK1_pT161:CyclinB]*) in response to different amount of (D) Aurora-A (*by altering the initial value of* [*AuroraA*]) and (E) Plk1 (*by altering the initial value of* [*PLK1*]) demonstrate the crucial functions of Aurora-A and Plk1 during checkpoint recovery (corresponding to Fig. 4C, D).

(**F,G**) Ensemble simulations of inappropriate hyperactive Aurora-A (*by altering the initial value of* [*AuroraA*]) promoting (F) the abnormal deactivation of Chk1 (*the amount of* [*CHK1_pS*]) and (G) the abnormal activation of cyclin B/Cdk1 (*the amount of* [*CDK1_pT161:CyclinB*]) even in the presence of G2/M checkpoint arrest signaling (corresponding to Fig. 4E, F).

(**H,I**) Ensemble simulations of the response of activated cyclin B/Cdk1 (*the amount of* [*CDK1_pT161:CyclinB]*) to the amount of (H) cyclin B (*by varying the initial value of* [*CycinB*]) and (I) Aurora-A (*by varying the initial value of* [*AuroraA*]) by altering the amount of Chk1 (*by altering the initial value of* [*Chk1*]) show that the threshold for cyclin B/Cdk1 activation is up-regulated in response to DNA-damage signaling (corresponding to Fig. 5B, C).

(**J,K**) The sensitivity of cyclin B/Cdk1 activation to changes in the amount of (J) Aurora-A and (K) Plk1 is up-regulated in response to Chk1 activation (corresponding to Fig. 5D).

(**L**) Ensemble simulation of the extra inhibition by concurrently targeting Aurora-A and Plk1 during normal mitotic entry and during checkpoint recovery (corresponding to Fig. 6, S6).

Fig. S5. (**A**) Simulation of the activation of Chk1 (*the amount of [CHK1]*) in response to DNA damage signaling, and its inactivation during G2/M checkpoint recovery. (**B**) Simulation of the relationship between the activities of cyclin B/Cdk1 (*the amount of [CDK1_pT161:CyclinB]*) and the concentrations of cyclin B (*by varying the initial value of [CycinB]*) in response to alterations of Chk1 (*by altering the initial value of [Chk1]*) and Aurora-A (*by altering the initial value of [AuroraA]*).

Fig. S6. Response surface simulation of combinational inhibition of Aurora-A and Plk1 during normal mitotic entry. There is no obvious synergistic combination effect (bottom right panel).

Fig. S7. Hela cells were treated with lower levels of VX-680 [VX(L), 3 nM] and BI-2536 [BI(L), 1 nM], and also were treated with higher levels of VX-680 [VX(H), 15 μ M] and BI-2536 [BI(H), 5 μ M]. The percentage of apoptotic and death cells was measured using Cell Counting Kit-8 assay. *n*=3 for each.