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Supplementary Methods: Practical limits for reverse engineering of
dynamical systems: a statistical analysis of sensitivity and parameter
inferability in systems biology models

Kamil Erguler & Michael P.H. Stumpf

1 Bayesian Sensitivity Measures for Dynamical Systems

1.1 Sensitivity for Bayesian inference.

We are interested in assessing the inferability of model parameters in systems biology models, and here we adopt
a Bayesian perspective, where we evaluate the information' contained in the posterior distribution about the true
parameter value. This information can also be understood in terms of the sensitivity of the posterior in response to
small changes in the parameter value. We thus have
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where E[] stands for the expectation over data; here and below we shall always assume that 6 # 0. As we show in
in section this equation is the Bayesian equivalent to the expected Fisher Information?. As a consequence, for a

multi-dimensional parameter set, we can write the information or sensitivity matrix as?,

0= (R0 ()

for parameters 0; and 0;. Sensitivity defined thus is related to the confidence intervals obtained during parameter
inferences.

1.2 Sensitivity for deterministic systems.

Here, we analyse the sensitivity of inferences from (potentially noisy) observations of deterministic systems at pre-
defined time points. We assume that such a system evolves from a set of initial conditions (which we here assume
to be known; incorporation of initial conditions into the inferential framework is straightforward). The observed data
are thus described by

8)‘ :y(l‘,e) +&,
where y(t,8) is the output from the deterministic system, &, is the observation at time ¢, and & ~ A((0, 6;), is Gaussian
noise characterized by o, is the variance of the experimental error at time ¢. Therefore, the likelihood of a single

observation at a single time, 7, obeys a Gaussian distribution. Using this likelihood and Eqn. (@), derived in detail
below, we have for the sensitivity matrix,
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where 0; and 0; represent the i"" and j"* components of the parameter vector.
Generally we aim to observe the system at a set of time points, whence the overall sensitivity for the observations
can be written as,

1 9yu(1,0) dynm(z,0)
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where y,,(¢,0) represents the deterministic solution of the time-evolution of the species m, and o, ,, represents the
standard deviation of the experimental error for the species m at time ¢.
The quantity,

dy(t,6) _ 19y(,0)
89,- a Gi E)ln 9,’ ’
is referred to as a sensitivity coefficient for parameter 6; at time 2. A range of sophisticated algorithms for calculating

these sensitivity coefficients exist and for our sensitivity package, we prefer to use a combination of the ODE solver,
CVODES?, and the automatic differentiation library, CppAD®.

3)

1.3 Sensitivity and Information

The relationship between sensitivity and the Fisher’s Information is evident upon careful inspection of the definition
of sensitivity. When we elaborate on the expectation in Eqn. (T,
E dInPr(6|9)
dln® ’
we obtain,

81nPr(6]8 dInPr( 5|6 dInPr(0)
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since the first integral equals zero. The sensitivity then becomes,

[ /91 Pr(8]9) alnPr(9)>2]

dlnd dlnd

where I(0) is the standard form of the expected Fisher Information”?. That means that in a Bayesian setting informa-
tion is, i.e. the curvature around the maximum a-posteriori estimate, is given in terms of classical parameter sensitivity
coefficients.
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1.4 Deriving Sensitivity Matrix For Deterministic Systems

Here we derive the sensitivity matrix — in our setting as shown above, equivalent to the expected Fisher information
— in detail. This is only for the sake of completeness as the derivation is standard”®., Because we assume that
the probability distribution is square integrable”, the sensitivity matrix can be written in two forms; using first order
partial derivatives as we present in Eqn. (2)),

d1InPr(5|6) dInPr(3(0)
5.(0) = Pr(8/0)ds, )
! dln6; dln6;
or using second order partial derivatives,
0 InPr(3|0)
Sii(0) =— | ==—=—="Pr(5|0)ds. 5
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Following the assumptions in Supplementary Methods |1.2] we replace the likelihood in the sensitivity equations
with a Gaussian

2
wan- e 11222

which can also we written as

dInPr(3,]0) 1 9y(1,0)
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Substituting this in the Eqn. we arrive at

1 9y(z,0) dy(z,6
5.,00) = [ LD 1, )52 pr(sio)as,
which simplifies further into
1 9v(1,0) 9y(1,6
o7 dln®; Jlnb;’

because the variation in the data is Gaussian with standard deviation ;.
We can also arrive at the same solution using Eqn. (5). First we calculate the second order partial derivative of the
likelihood

~—

Si,(8)
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Then, using Eqn. (3)), we write
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Since the expected value of the data are y(¢,0), we end up with the same solution as before,
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The likelihood equations so far constituted of a single observation at a single time point. In the usual case where the
data is a collection of observations, the likelihood can be written as

Pr(D]6) HHPr 8.m0)

where D = {§, |t € R",m € system components}. When we obtain the logarithm and the second order partial
derivative of this expression,

0’InPr(D|0) 1 [0yn(t,0) dym(t, e) ?yn(t,0)
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and we calculate the sensitivity as in Eqn. (5)), since the expected value of the 9D are given by y,(¢,0), we arrive at the
multidimensional sensitivity matrix,

1 dym(,0) dym(z,0)
5ij(0 ch,m dln®; JIn6; ’ v0#0.

This finally links up sensitivity coefficients and the expected Fisher information (or sensitivity matrix).

2 The Smallest System with a Hopf Bifurcation

The set of ODEs for the chemical oscillating system is given by the following set of equations U11:

X1 = Aokixi—ksx1—kyx1x
X2 = —k3xp+ksxz
X3 = kax; —ksx;

The system has three dimensions with six parameters in total including the species Ag whose concentration is
fixed. There are two fixed points, which obey the relationships,

k3 A()kl
0 % A k k.
p=\|0|, p=| 275
O A()]q k4
k>

By linearising the ODEs at these fixed points, using the initial point (1,1,1)T, and the parameters, k; = 1, k =
0.01, ks =1, k4 = 0.5, ks = 1, we observe that the system settles on the attractor p; for Ag < 0.5, and then on p, for
Ao > 0.5. In Figure [T} we show the three eigenvalues of the linearised system for the corresponding attractors with
respect to the parameter Ap.
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Figure 1 The three distinct global dynamical behaviours for the chemical oscillating system.The plot shows the stability of the
system for the attractors p; for Ay < 0.5, and for p, for Ag > 0.5. The system exhibits a stable node for the attractor p;. At

A = 2.5 the systems exhibits a Hopf bifurcation and the attractor p, is therefore a stable limit cycle. The three eigenvalues of
the system are coloured in red, green, and blue.
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Figure SF.1: Sensitivity profiles for the BioModels database.
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