

Supplementary Fig. S1 Phage clone 1 and clone 2 display specificity for T_βRI-ED and T_βRII-ED over BSA.

Supplementary Fig. S2 Optimization of detergent additives for phage ELISA. (A) Structures of CHAPS and Tween-20. (B) Phage binding signals decrease with increasing CHAPS concentrations, indicating this detergent disrupts phage aggregation. The ability of Pep1 to compete clone 1 is enhanced as the CHAPS concentration is raised. (C) TBST containing 4 mM Tween-20 (0.5%) is optimal for this competition ELISA. Error bars represent the mean ± the standard deviation in (B) and (C).

[Pep1] (M)

Α			В				
Phage clones	${\cal K}_{\sf dphage}({\sf pM})$		Synthetic	IC ₅₀ (μM)		<i>K</i> _d (μ M)	
	TβRI-ED	TβRII-ED	peptides	TβRI-ED	TβRII-ED	TβRI-ED	TβRII-ED
Clone 1	298 ± 5	334 ± 8	Pep1	82 ± 4	62 ± 6	40 ± 2	33 ± 3
Clone 2	45 ± 2	50 ± 2	Pep2	155 ± 1	5 141 ± 9	88 ± 10	83 ± 6

Supplementary Table S1 (A) Apparent dissociation constants for the interaction of phage clones ($K_{d phage}$) with the immobilized extracellular domains of T β RI and T β RII. (B) Pep1, derived from clone 1, and Pep2, derived from clone 2, inhibit phage clones from binding to immobilized receptors. The IC₅₀ values of Pep1 and Pep2 were determined, and dissociation constants (K_d) were then derived using the Cheng-Prusoff equation: $K_d = IC_{50}/(1+[phage]/K_{d phage})$. Standard deviations from three experimental replicates are shown.

Supplementary Fig. S3 The abilities of (A) phage clone 1 and (B) clone 2 to bind immobilized T β RI-ED (residue 7-91) and T β RI-ED (residue 1-101) were tested using a phage based ELISA. (C) Apparent dissociation constants for the interaction of phage clones ($K_{d phage}$) with immobilized T β RI-ED (residue 7-91) and T β RI-ED (residue 1-101). (D) ELISA-based competition binding assay. Pep1 derived from clone 1 and (E) Pep2 derived from clone 2 inhibit phage clones from binding to immobilized T β RI-ED (residues 7-91). (F) The IC₅₀ values of Pep1 and Pep2 were determined, and their dissociation constants (K_d) to T β RI-ED (residue 7-91) were derived using the Cheng-Prusoff equation: K_d =IC₅₀/(1+[phage]/ $K_{d phage}$). Standard deviations from three experimental replicates are shown.

Supplementary Fig. S4 (A) TGF- β 1 treatment upregulates the reporter gene expression with an EC₅₀ value of ~10 pM. (B) Pep1 treatment alone does not initiate luciferase expression.

Supplementary Fig. S5 (A) Binding of BMP-4 to BMPR-IA and (B) ActRII were assessed by SPR. All proteins were immobilized through their lysine residues. A protein-free flow cell was used as control. BMP-4 was injected to all flow cells at concentrations ranging from 0.6 nM to 38 nM. The dose-dependent response curves indicate that both receptors are active when immobilized on the SPR sensor chip.