Supporting Information

The Importance of Lipid Geometry on Lipid Assembly in Lipoplexes

Laila Kudsiova,^a Jimmy Ho,^b Barbara Fridrich,^a Richard Harvey,^a Melanie Keppler,^c Tony Ng,^c Stephen L. Hart,^d Alethea B. Tabor,^b Helen C. Hailes^b and M. Jayne Lawrence^a

^aPharmaceutical Science Research Division, King's College London, Stamford Street, London, SE1 9NH, UK

^bDepartment of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

^cRandall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus London SEL IUL UK

London, SE1 1UL UK. ^d Molecular Immunology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK

Contents

General Experimental Methods	S2
(E)-9-Tetradecen-1-ol	S2
(E)-9-Tetradecen-1-yloxy mesylate	S3
2,3-Di-((9 <i>E</i>)-tetradecenyloxy)propyl- <i>N</i> , <i>N</i> -dimethylamine (5)	S3
11-Tetradecyn-1-ol	S4
(E)-11-Tetradecen-1-ol	S5
(E)-11-Tetradecen-1-yloxy mesylate	S5
2,3-Di-((11 <i>E</i>)-tetradecenyloxy)propyl- <i>N</i> , <i>N</i> -dimethylamine (7)	S5
2,3-Di-[(Z)-tetradec-9-enyloxy]propyl- <i>N</i> , <i>N</i> , <i>N</i> -trimethylammonium chloride (9)	S6
2,3-Di-[(<i>E</i>)-tetradec-9-enyloxy]propyl- <i>N</i> , <i>N</i> , <i>N</i> -trimethylammonium chloride (10)	S 6
2,3-Di-[(Z)-tetradec-11-enyloxy]propyl- <i>N</i> , <i>N</i> , <i>N</i> -trimethylammonium chloride (11)	S7
2,3-Di-[(<i>E</i>)-tetradec-11-enyloxy]propyl- <i>N</i> , <i>N</i> , <i>N</i> -trimethylammonium chloride (12)	S 7
Tables	
Tables 1-2	S9
Tables 3-4	S10
Tables 5-6	S11
Tables 7-8	S12
Figures	
Figure 1-2	S13
Figures 3-4	S14
References	S15

General Experimental Methods

Unless otherwise noted, solvents and reagents were reagent grade from commercial suppliers and used without further purification. THF was dried by distillation from a sodium/benzophenone suspension under a dry N_2 atmosphere. CH_2Cl_2 was dried by distillation from CaH_2 under a dry N_2 atmosphere. Pyridine was dried by distillation over CaH_2 under a dry N_2 atmosphere. All moisture-sensitive reactions were performed under a nitrogen atmosphere using oven-dried glassware. Reactions were monitored by TLC on Kieselgel 60 F_{254} plates for normal phase TLC, with detection by UV, or permanganate, and phosphomolybdic acid stains. Flash column chromatography was carried out using silica gel (particle size 40-63 μ m) purchased from Sigma-Aldrich Co. Ltd.

Melting points are uncorrected. IR spectra were recorded using a FT-IR Shimidasu 8700 instrument. Only selected peaks were reported (cm⁻¹). ¹H NMR and ¹³C spectra were recorded on Bruker[®] AMX300 MHz, AVANCE500 MHz machines in CDCl₃. Unless otherwise specified, NMR spectra were recorded at 298 K. Mass spectra (+ES) were recorded on a Micromass Quatto LC spectrospray (+ES), a UG70FE (FAB), and a MAT 900XP spectrometer (+HRFAB and +HRES).

Tertiary amines **3**, **4**, **6** were prepared as previously described.^{1,2} The iodide salt of **11** was prepared as previously described.^{2,3} 2-Dodec-11-ynyloxy-tetrahydro-2*H*-pyran was synthesised as reported in the literature.^{4,5}

Scheme 1. Route to 5

(E)-9-Tetradecen-1-ol

9-Tetradecyn-1-ol¹ (2.30 g, 11.0 mmol) in diglyme (5 mL) was added dropwise to a stirring solution of lithium aluminium hydride⁶ (1.45 g, 38.3 mmol) in anhydrous diglyme (45 mL) at -10 °C. The mixture was warmed to rt and heated at reflux for 72 h. The reaction mixture was quenched by the addition of ice (5 g), and neutralised with 1 M HCl. Diethyl ether (20 mL) and water (40 mL) were added to the mixture, and the organic phase was extracted with diethyl ether (3 × 30 mL). The combined organic extracts were washed with brine (100 mL), dried (MgSO₄) and evaporated *in vacuo*. Purification by

flash silica chromatography (40% Et₂O in hexane) gave *(E)-9-tetradecen-1-ol* (1.39 g, 60%) as a pale yellow oil. $R_f = 0.45$ (40% Et₂O in hexane); v_{max} (film)/cm⁻¹ 3333, 2934, 1458; δ_H (300 MHz; CDCl₃) 0.86 (3H, m, CH₃), 1.29 (14H, m, 7 × CH₂), 1.60 (3H, m, CH₂CH₂OH), 1.96 (4H, m, H₂CC=CHCH₂), 3.61 (2H, t, *J* 6.6 Hz, CH₂OH), 5.37 (2H, m, CH₂=CH₂); δ_C (75 MHz; CDCl₃) 13.9 (CH₃), 22.2, 25.7, 29.1, 29.3, 29.4, 29.6, 31.8, 32.2, 32.6, 32.8, 63.0 (CH₂OH), 130.2 (C=C), 130.3 (C=C); *m/z* (+ES) 213 (MH⁺, 100%).

(E)-9-Tetradecen-1-yloxy mesylate

(*E*)-9-Tetradecen-1-ol (1.39 g, 6.56 mmol) and methanesulfonyl chloride (0.61 mL, 7.87 mmol) in anhydrous dichloromethane were stirred at rt for 15 min. The mixture was cooled to 0 °C and triethylamine (1.09 mL, 7.87 mmol) added dropwise. The reaction mixture was warmed to rt and stirred for 18 h, then the organic layer extracted with dichloromethane (50 mL) and washed with saturated sodium hydrogencarbonate solution (50 mL) and brine (50 mL). The organic layer was dried (MgSO₄) and the solvent removed *in vacuo* to yield the titled compound (1.81 g, 95%) as a pale yellow oil. R_f = 0.60 (CH₂Cl₂); $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.90 (3H, m, CH₂CH₃) 1.31 (14H, m, 7 × CH₂), 1.74 (2H, br quint *J* 5.6 Hz, OCH₂CH₂), 1.96 (4H, m, CH₂CH=CHCH₂), 2.99 (3H, s, CH₃S), 4.21 (2H, t, *J* 6.6 Hz, CH₂O), 5.38 (2H, m, CH=CH); $\delta_{\rm C}$ (75 MHz; CDCl₃) 14.0 (CH₂CH₃), 22.2, 25.4, 29.0, 29.1, 29.3 (signal overlap), 29.6, 31.8, 32.3, 32.6, 37.4 (CH₃S), 70.2 (CH₂O), 130.2 (C=C), 130.4 (C=C); *m/z* (+ES) 329 (MK⁺, 25%), 313 (MNa⁺, 100).

2,3-Di-((9*E*)-tetradecenyloxy)propyl-*N*,*N*-dimethylamine (5)

To a stirring solution of sodium hydride (60% in mineral oil; 0.27 g, 6.72 mmol) in anhydrous toluene (35 mL) at rt was added 3-dimethylaminopropane-1,2-diol (0.27 mL, 2.24 mmol). The mixture was heated at 50 °C for 20 min, and (*E*)-tetradec-9-enyl mesylate (1.95 g, 6.72 mmol) was added. The reaction was then heated at reflux for 72 h. On cooling, water (100 mL) was added and the product extracted with ethyl acetate (3 × 50 mL). The combined organic extracts were washed with saturated sodium hydrogencarbonate solution (30 mL), saturated sodium chloride (30 mL) and dried (MgSO₄). The solvent was removed *in vacuo* to give the crude product which was purified by silica flash chromatography (5% MeOH in CH₂Cl₂) to afford 5 (0.710 g, 63%) as a pale yellow oil. R_f = 0.36 (5% MeOH in CH₂Cl₂); v_{max} (film)/cm⁻¹ 2926, 2854, 1660, 1460; $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.88 (6H, m, 2 × CH₂CH₃), 1.29 (28H, m), 1.54 (4H, m, 2 × CH₂CH₂OH), 1.95 (8H, m, 2 × H₂CC=CHCH₂), 2.28 (6H, s, N(CH₃)₂), 2.41 (2H, m, NCH₂CH), 3.39–3.61 (7H, m, CHOCH₂, CH₂OCH₂), 5.38 (4H, m, CH₂=CH₂); $\delta_{\rm H}$ (75 MHz; CDCl₃) 14.0 (CH₂CH₃), 22.2, 26.1, 29.1, 29.5, 29.7 (signals superimposed), 30.2, 31.8, 32.3, 32.6, 46.3 (N(CH₃)₂), 61.1 (NCH₂CH), 70.2 (CHCH₂O), 71.6 and 72.0 (OCH₂CH₂), 73.5

 $(CHOCH_2)$, 130.3 (C=C); m/z (+ES) 509 (MH⁺, 100%), 481 (13); Found (+HRES) MH⁺ 508.50896. C₃₃H₆₆NO₂ requires 508.50936.

Scheme 2. Route to 7

11-Tetradecyn-1-ol

This was prepared via modification of reported routes as described below. *n*-Butyllithium (2.5 M solution in hexane; 7.82 mL, 19.6 mmol) was added dropwise over 2 min to a stirred solution of 2-dodec-11-ynyloxy-tetrahydro-2*H*-pyran^{4,5} (4.35 g, 16.3 mmol) at -10 °C in anhydrous THF (40 mL) and hexamethylphosphoramide (HMPA) (10 mL). The reaction was stirre at -10 °C and for 2 h, followed by the addition of bromoethane (1.83 mL, 24.5 mmol). The reaction mixture was warmed to rt and then stirred for a further 48 h. Water (150 mL) and saturated ammonium chloride solution (150 mL) was added to the mixture and the organic layer extracted with dichloromethane (3 × 150 mL). The combined organic extracts were dried (MgSO₄) and the solvent evaporated *in vacuo*. The crude product was purified by flash silica chromatography (5% EtOAc in hexane) to yield 2-(tetradec-11-ynyl-1-oxy)tetrahydro-2*H*-pyran (3.89 g, 83%) as a clear yellow oil. R_f = 0.25 (1: 19 EtOAc in hexane); v_{max} (film)/cm⁻¹ 2932, 2855, 2365; $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.49 (3H, t, *J* 6.9 Hz, CH₃), 1.56–1.30 (22H, m), 2.13 (4H, m, CH₂C=CCH₂), 3.35 (1H, m, THPOCHH), 3.47 (1H, m, OCHOCHH), 3.75 (1H, m, THPOCHH), 3.85 (1H, m, OCHOCHH), 4.56 (1H, m, OCHOCH₂); $\delta_{\rm H}$ (75 MHz; CDCl₃) 14.4 (CH₃), 18.7, 19.7, 22.6, 25.5, 26.2, 28.8, 29.1, 29.4, 29.5, 29.7, 30.7, 30.8, 62.3 (OCHOCH₂), 67.7 (THPOCH₂), 79.5 (*C*=C), 81.5 (C=*C*), 98.8 (OCHOCH₂); *m/z* (+ES) 317 (MNa⁺,100%).

2-(Tetradec-11-ynyl-1-oxy)tetrahydro-2*H*-pyran (1.85 g, 6.29 mmol) was added a solution of concentrated HCl/water/methanol (91 mL; 1:1:5). The reaction mixture was stirred for 18 h at rt, followed by neutralisation with 10 M NaOH aqueous solution. The mixture was concentrated *in vacuo*, and water (100 mL) was added. The product was extracted with diethyl ether (3×70 mL), the combined organic extracts were dried (MgSO₄) and the solvent was removed *in vacuo*. Purification by flash silica

chromatography (40% Et₂O in hexane) gave 11-tetradecyn-1-ol⁷ (0.93 g, 70%) as a colourless oil. $R_f = 0.45$ (40% Et₂O in hexane); ν_{max} (film)/cm⁻¹ 3333, 2924, 2855, 2361, 1458; δ_H (300 MHz; CDCl₃) 1.11 (3H, t, *J* 7.3 Hz, *CH*₃), 1.29–1.65 (16H, m), 2.15 (4H, m, *H*₂CC=CHC*H*₂), 3.62 (2H, t, *J* 6.6 Hz, *CH*₂OH); δ_H (75 MHz; CDCl₃) 12.4, 14.4, 18.7, 25.7, 28.8, 29.1, 29.3 (signal overlap), 29.4, 29.5, 32.8, 63.1 (*C*H₂OH), 79.6 (*C*=C), 81.6 (C=*C*); *m/z* (+ES) 233 (MNa⁺, 10%).

(E)-11-Tetradecen-1-ol

11-Tetradecyn-1-ol (0.85 g, 4.05 mmol) in diglyme (5 mL) was added dropwise to a stirring solution of lithium aluminium hydride (0.54 g, 14.2 mmol; 3.5 eq) in anhydrous diglyme (5 mL) at -10 °C. The mixture was warmed to rt and heated at reflux for 72 h. The reaction mixture was quenched by the addition of ice (5 g), and neutralised with 1 M HCl. Diethyl ether (20 mL) and water (40 mL) was added to the mixture, and the organic phase was extracted with diethyl ether (3 × 30 mL). The combined organic extracts were washed with brine (100 mL), dried (MgSO₄) and evaporated *in vacuo*. Purification by flash silica chromatography (40% Et₂O in hexane) (*E*)-11-tetradecen-1-ol (0.42 g, 49%) as a pale yellow oil. $R_f = 0.45$ (2:3, Et₂O: hexane); v_{max} (film)/cm⁻¹ 3333, 2934, 2855, 1458, 1057; δ_{H} (300 MHz; CDCl₃) 0.95 (3H, t, *J* 7.5 Hz, CH₃), 1.28–1.40 (14H, m), 1.56 (2H, m, CH₂CH₂OH), 1.97 (4H, m, $H_2CC=CHCH_2$), 3.62 (2H, t, *J* 6.6 Hz, CH₂OH), 5.39 (2H, m, CH=CH); δ_{C} (75 MHz; CDCl₃) 14.0 (CH₃), 25.6, 25.7, 26.1, 29.2, 29.4, 29.5, 29.6 (signals superimposed), 29.7, 32.6, 32.8, 63.0 (CH₂OH), 129.4 and 131.9 (C=C); *m/z* (+ES) ; *m/z* (+ES) 213 (MH⁺, 100%)

(E)-11-Tetradecen-1-yloxy mesylate

(*E*)-11-Tetradecen-1-ol (2.35 g, 11.1 mmol) and methanesulfonyl chloride (1.02 mL, 13.3 mmol) in anhydrous dichloromethane (60 mL) were stirred at rt for 15 min. The mixture was cooled to 0 °C, and triethylamine (1.84 mL, 13.3 mmol) added dropwise. The reaction mixture was warmed to rt and stirred for 18 h. The organic layer was extracted with dichloromethane (50 mL) and washed with saturated sodium hydrogencarbonate solution (50 mL) and brine (50 mL). The organic layer was dried (MgSO₄) and the solvent removed *in vacuo*. Purification by flash silica chromatography (CH₂Cl₂) gave the titled compound (3.01 g, 94%) as a pale yellow oil. $R_f = 0.60$ (CH₂Cl₂); δ_H (300 MHz; CDCl₃) 0.95 (3H, t, *J* 7.5 Hz, CH₂CH₃), 1.26–1.43 (14H, m), 1.78 (2H, quin, *J* 6.6 Hz, OCH₂CH₂), 1.97 (4H, m, CH₂CH=CHCH₂), 2.99 (3H, s, CH₃SO₂), 4.21 (2H, t, *J* 6.6 Hz, CH₂O), 5.39 (2H, m, CH=CH); δ_C (75 MHz; CDCl₃) 14.0 (CH₂CH₃), 25.4, 25.6, 29.0, 29.1, 29.4, 29.5, 29.6 (signal overlap), 30.9, 32.6, 37.3 (CH₃SO₂), 70.2 (CH₂O), 129.3 (C=C), 131.9 (C=C); *m/z* (+ES) 313 (MNa⁺, 100%).

2,3-Di-((11*E*)-tetradecenyloxy)propyl-*N*,*N*-dimethylamine (7)

To a stirring solution of sodium hydride (60% in mineral oil; 0.34 g, 8.41 mmol) in anhydrous toluene (40 mL) at rt was added 3-dimethylaminopropane-1,2-diol (0.33 mL, 2.80 mmol). The mixture was heated at 50 °C for 20 min, and (*E*)-11-tetradecen-1-yloxy mesylate (2.44 g, 8.41 mmol) was added. The reaction was then heated at reflux for 72 h. On cooling, water (100 mL) was added and the product extracted with ethyl acetate (3 × 50 mL). The combined organic extracts were washed with saturated sodium hydrogencarbonate solution (30 mL), saturated sodium chloride (30 mL) and dried (MgSO₄). The solvent was removed *in vacuo* to give the crude product, which was purified by silica flash chromatography (5% MeOH in CH₂Cl₂) to afford 7 (0.720 g, 51%) as a pale yellow oil. R_f = 0.36 (5% MeOH: CH₂Cl₂); v_{max} (film)/cm⁻¹ 2923, 2853, 1645, 1460; $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.94 (6H, t, *J* 7.5 Hz, 2 × CH₂CH₃), 1.26 (28H, m), 1.57 (4H, quin, *J* 6.6 Hz, 2 × CH₂CH₂O), 2.00 (8H, m, 2 × H₂CC=CHCH₂), 2.28 (6H, s, N(CH₃)₂), 2.39 (2H, m, NCH₂CH), 3.40–3.61 (7H, m, CHOCH₂, CH₂OCH₂), 5.33 (4H, m, CH₂=CH₂); $\delta_{\rm H}$ (75 MHz; CDCl₃) 14.0 (CH₂CH₃), 25.6, 26.2, 29.2, 29.5 (signals superimposed), 29.6, 29.7, 30.2, 32.6, 46.3 (N(CH₃)₂), 61.1 (NCH₂CH), 70.2 (CHCH₂O), 71.6 and 72.0 (OCH₂CH₂), 73.6 (CHOCH₂), 129.3 (C=C), 131.8 (C=C); *m/z* (+ES) 509 (MH⁺, 100%), 483 (7); Found (+HRES) MH⁺ 508.50938. C₃₃H₆₆NO₂ requires 508.50936.

Scheme 3. Routes to lipids 9 and 10

2,3-Di-((9Z)-tetradecenyloxy)propyl-N,N,N-trimethylammonium chloride (9)

2,3-Di-((9*Z*)-tetradecenyloxy)propyl-*N*,*N*-dimethylamine¹ (**4**) (0.560 g, 1.10 mmol) and iodomethane (0.69 mL, 11.1 mmol) were stirred in a sealed tube in the dark for 18 h at rt. Excess iodomethane was removed *in vacuo* and the product purified by flash silica chromatography (5% MeOH in CH₂Cl₂) to give the iodide salt (0.670 g, 93%) as a yellow solid. The iodide salt (131 mg, 0.20 mmol) was then dissolved in CH₂Cl₂ and MeOH (1:1, 10 mL) and the resulting solution was stirred with Amberlite[®] IRA-400 (Cl) ion-exchange resin (0.5 g) for 18 h at rt. The mixture was filtered, and the filtrate concentrated *in vacuo* to give **9** (105 mg, 94%) as a yellow oil. v_{max} (film)/cm⁻¹ 2926, 2855, 1643, 1466; $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.88 (6H, m, 2 × CH₂CH₃), 1.28 (28H, m), 1.53 (4H, m, 2 × CH₂CH₂O), 1.98 (8H, m, 2 x H_2 CC=CHC H_2), 3.40 (4H, t, *J* 6.7 Hz, 2 x CH₂C H_2 O), 3.46 (9H, s, N⁺(CH₃)₃), 3.53–3.72 (3H, m), 4.06 (2H, m), 5.34 (4H, m, C H_2 =C H_2); $\delta_{\rm C}$ (75 MHz; CDCl₃) 13.9 (CH₂CH₃), 22.3, 26.0, 26.2, 26.9, 27.2, 29.3, 29.4 (signal overlap), 29.7, 30.0, 31.9, 54.9 (N⁺(CH₃)₃), 68.4, 69.3, 72.0

 $(OCH_2C_{13}H_{25})$, 73.6 (CHOCH₂), 129.8 and 129.9 (C=C); m/z (+ES) 523 ([MH-Cl]⁺, 100%); Found (+HREI) [M-Cl]⁺ 522.52406. C₃₄H₆₈NO₂ requires 522.52446.

2,3-Di-((9*E*)-tetradecenyloxy)propyl-*N*,*N*,*N*-trimethylammonium chloride (10)

2,3-Di-((9*E*)-tetradecenyloxy)propyl-*N*,*N*-dimethylamine (**5**) (0.63 g, 1.24 mmol) and iodomethane (0.77 mL, 12.4 mmol) were stirred in a sealed tube in the dark for 18 h at rt. Excess iodomethane was removed *in vacuo* and the product purified by flash silica chromatography (5% MeOH: CH₂Cl₂) to give the iodide salt (0.76 g, 94%) as a yellow solid. The iodide salt (104 mg, 0.16 mmol) was dissolved in CH₂Cl₂ and MeOH (1:1, 10 mL) and the resulting solution stirred with Amberlite[®] IRA-400 (Cl) ion-exchange resin (0.5 g) for 18 h at rt. The mixture was filtered, and the filtrate concentrated *in vacuo* to give **10** (83 mg, 93%) as a yellow oil. R_f = 0.32 (5% MeOH: CH₂Cl₂); v_{max} (film)/cm⁻¹ 2924, 2852, 1634, 1466; $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.87 (6H, m, 2 × CH₂CH₃), 1.30 (28H, m), 1.54 (4H, m, 2 × CH₂CH₂OH), 1.96 (8H, m, 2 × H₂CC=CHCH₂), 3.42 (4H, t, *J* 6.7 Hz, 2 × CH₂CH₂O), 3.51 (9H, s, N⁺(CH₃)₃), 3.52–3.72 (3H, m), 4.07 (2H, m), 5.37 (4H, m, CH₂=CH₂); $\delta_{\rm H}$ (75 MHz; CDCl₃) 14.0 (CH₂CH₃), 22.2, 26.0, 26.2, 29.1, 29.4, 29.5 (signals overlap), 30.0, 31.8, 32.3, 32.6, 54.9 (N⁺(CH₃)₃), 68.4, 69.3, 72.0 (OCH₂C₁₃H₂₅), 73.6 (CHOCH₂), 130.2, (C=C), 130.4 (C=C); *m/z* (+ES) 523 ([M-Cl]⁺, 100%); Found (+HREI) [M-Cl]⁺ 522.52404. C₃₄H₆₈NO₂ requires 522.52446.

Scheme 4. Routes to lipids 11 and 12

2,3-Di-((11*Z*)-tetradecenyloxy)propyl-*N*,*N*,*N*-trimethylammonium chloride (11)

2,3-Di-((11*Z*)-tetradecenyloxy)propyl-*N*,*N*,*N*-trimethylammonium iodide² (96 mg, 0.15 mmol) was dissolved in CH₂Cl₂ and MeOH (1:1, 10 mL) and stirred with Amberlite[®] IRA-400 (Cl) ion-exchange resin (0.5 g) for 18 h at rt. The mixture was filtered, and the filtrate concentrated *in vacuo* to give **11** (78 mg, 94%) as a yellow oil. v_{max} (film)/cm⁻¹ 2922, 2853, 1645, 1466; $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.95 (6H, t, *J* 7.5 Hz, 2 × CH₂CH₃), 1.26 (28H, m), 1.55 (4H, m, 2 × CH₂CH₂O), 2.02 (8H, m, 2 × H₂CC=CHCH₂), 3.42 (4H, t, *J* 6.6 Hz, 2 × CH₂CH₂O), 3.49 (9H, s, N⁺(CH₃)₃), 3.54–3.71 (3H, m), 4.07 (2H, m), 5.32 (4H, m, CH₂=CH₂); $\delta_{\rm H}$ (75 MHz; CDCl₃) 14.3 (CH₂CH₃), 20.4, 25.9, 26.1, 26.9, 29.2, 29.3, 29.5 (signals overlap), 29.9, 54.6 (N⁺(CH₃)₃), 67.7, 68.4, 69.2, 71.9 (OCH₂C₁₃H₂₅), 73.5 (CHOCH₂), 129.2 (*C*=C), 131.4 (C=*C*); Found (+HREI) [M-Cl]⁺ 522.52484. C₃₄H₆₈NO₂ requires 522.52446.

2,3-Di-((11*E*)-tetradecenyloxy)propyl-*N*,*N*,*N*-trimethylammonium chloride (12)

2,3-Di-((11*E*)-tetradecenyloxy)propyl-*N*,*N*-dimethylamine (7) (0.420 g, 0.826 mmol) and iodomethane (0.52 mL, 8.35 mmol) were stirred in a sealed tube in the dark for 18 h at rt. Excess iodomethane was removed *in vacuo* and the product purified by flash silica chromatography (5% MeOH in CH₂Cl₂) to give the iodide salt (0.500 g, 93%) as a yellow solid. The iodide salt (124 mg, 0.191 mmol) was then dissolved in CH₂Cl₂ and MeOH (1:1, 10 mL) and the resulting solution stirred with Amberlite[®] IRA-400 (Cl) ion-exchange resin (0.5 g) for 18 h at rt. The mixture was filtered, and the filtrate concentrated *in vacuo* to give **12** (100 mg, 94%) as a yellow oil. R_f = 0.32 (5% MeOH in CH₂Cl₂); v_{max} (film)/cm⁻¹ 2919, 2851, 1640, 1466; $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.92 (6H, t, *J* 7.4 Hz, 2 × CH₂CH₃), 1.22 (28H, m), 1.52 (4H, m, 2 × CH₂CH₂O), 1.96 (8H, m, 2 × H₂CC=CHCH₂), 3.38 (4H, t, *J* 6.7 Hz, 2 × CH₂CH₂O), 3.43 (9H, s, N⁺(CH₃)₃), 3.46–3.65 (3H, m), 3.91–4.04 (2H, m), 5.37 (4H, m, CH₂=CH₂); $\delta_{\rm H}$ (75 MHz; CDCl₃) 14.0 (CH₂CH₃), 25.6, 26.0, 26.2, 29.2, 29.4 (signal overlap), 29.6, 30.0, 32.6, 54.8 (N⁺(CH₃)₃), 67.8, 68.5, 69.3, 72.0 (OCH₂C₁₃H₂₅), 73.6 (CHOCH₂), 129.3 (C=C), 131.8 (C=C); Found (+HREI) [M-CI]⁺ 522.52491. C₃₄H₆₈NO₂ requires 522.52446.

Tables

Table 1 The z-average diameter (nm), polydispersity index value and zeta potential (mV) measured at 298 K for the cationic vesicles formed by the C14 DOTMA analogues (chloride salt) after 2 minutes probe sonication. The standard deviation values from 10 repeat measurements on a single vesicle preparation are shown in brackets.

Lipids used for	z-Average diameter in	Polydispersity	Zeta potential in mV
vesicle	nm (± SD)	(± SD)	(± SD)
preparation			
1	135.3 (1.1)	0.258 (0.01)	21.6 (1.2)
8	71.0 (0.9)	0.286 (0.01)	39.7 (0.9)
9	101.0 (1.2)	0.268 (0.01)	41.8 (2.2)
10	63.3 (1.0)	0.235 (0.01)	52.1 (1.5)
11	104.7 (0.6)	0.299 (0.01)	55.0 (0.9)
12	94.0 (0.5)	0.275 (0.01)	37.7 (1.2)

Table 2 The z-average diameters (nm), polydispersity index values and zeta potential (mV) measured at 298 K for the cationic vesicles formed by the DOTMA analogues (iodide salt). The standard deviation values from 10 repeat measurements on a single vesicle preparation are shown in brackets.

Lipids used for	z-Average diameter in	Polydispersity	Zeta potential in mV
vesicle	nm (± SD)	(± SD)	(± SD)
preparation			
1	124.7 (0.9)	0.211 (0.01)	16.5 (2.6)
8	111.0 (1.0)	0.256 (0.01)	39.8 (1.6)
9	92.7 (1.3)	0.265 (0.01)	50.3 (1.0)
10	99.0 (0.7)	0.209 (0.01)	N/D
11	93.3 (0.8)	0.215 (0.01)	35.0 (1.3)
12	105.0 (1.2)	0.218 (0.01)	41.3 (1.5)

Table 3 The z-average diameters (nm) and zeta potential (mV) of the LD complexes formed from different weight ratios of cationic lipids **1** and **8** (iodide salt) and ctDNA measured at 298 K. The standard deviation values from 10 repeat measurements on a single vesicle preparation are shown in brackets

Composition of LD complex		Mean particle size (nm)	Zeta Potential (mV)
Lipid	Lipid:DNA weight ratio		
1	16:1	120.9 (2.0)	16.9 (1.2)
1	8:1	348.5 (4.7)	4.3 (0.5)
1	4:1	430.1 (6.2)	-5.1 (0.7)
8	16:1	115.4 (2.5)	34.5 (1.5)
8	8:1	260.7 (5.4)	6.3 (0.9)
8	4:1	359.3 (6.5)	-7.8 (0.9)

Table 4 The z-average diameters (nm), polydispersity index values and zeta potential (mV) of cationic vesicles formed by the DOTMA:DOPE analogues (iodide salt) after probe sonication for 5 minutes and measured at 298 K. The standard deviation values from 10 repeat measurements on a single vesicle preparation are shown in brackets.

Lipid	z-Average diameter in	Polydispersity	Zeta potential in mV
	nm (± SD)	(± SD)	(± SD)
1:2	173.3 (1.4)	0.241 (0.01)	29.8 (1.2)
8:2	152.3 (2.1)	0.208 (0.01)	26.1 (2.2)
9:2	N/D	N/D	N/D
10:2	131.3 (1.3)	0.295 (0.01)	N/D
11:2	114.7 (1.4)	0.288 (0.01)	N/D
12:2	155.3 (1.0)	0.277 (0.01)	N/D

Table 5 Effect of different weight ratio on particle size of lipid:DNA complexes prepared from vesicles containing 2 and pDNA. The standard deviation values from 5 repeat measurements on a single preparation are shown in brackets.

Lipids used to	Mean particle size (nm)									
prepare the	Lipid:DNA Weight ratios (total lipid)									
LD complexes	1:1	2:1	4:1	8:1	16:1					
Lipofectamine	141.8 (2.4)	141.3 (2.8)	132.9 (8.8)	224.8 (4.1)	167.3 (9.0)					
1:2	249.4 (23.1)	272.0 (17.8)	304.1 (16.0)	308.6 (9.7)	403.1 (12.9)					
10:2	205.5 (1.1)	251.8 (2.8)	256.5 (18.8)	339.2 (6.9)	257.3 (9.5)					
12:2	205.6 (4.2)	216.6 (4.5)	218.6 (3.9)	435.7 (25.7)	283.8 (11.1)					
9:2	273.4 (8.8)	270.6 (8.4)	274.3 (7.3)	310.4 (8.6)	489.6 (10.5)					
11:2	151.1 (8.7)	155.9 (15.1)	172.3 (2.5)	219.6 (3.9)	402.0 (4.0)					
8:2	180.2 (15.8)	181.3 (7.3)	208.8 (15.5)	269.9 (31.4)	384.9 (7.9)					

Table 6 Effect of different weight ratio on zeta potential of lipid:DNA complexes. prepared from vesicles containing 2 and pDNA The standard deviation values from 5 repeat measurements on a single preparation are shown in brackets.

Lipids used to		Me	an zeta potentia	l (mV)						
prepare the	Lipid:DNA Weight ratios (total lipid)									
LD complexes	1:1	2:1	4:1	8:1	16:1					
Lipofectamine	-22.7 (3.0)	-10.4 (4.8)	-0.3 (0.2)	4.3 (1.5)	36.2 (4.2)					
1:2	-22.0 (2.6)	-20.7 (2.1)	-16.2 (5.0)	-15.6 (3.9)	12.4 (2.3)					
10:2	-16.3 (2.0)	-15.8 (1.5)	-12.5 (3.3)	-11.1 (1.3)	29.9 (2.0)					
12:2	-16.0 (0.4)	-11.3 (1.9)	-10.5 (1.2)	-4.9 (1.6)	26.6 (3.4)					
9:2	-18.8 (1.0)	-15.8 (1.9)	-8.5 (1.8)	-8.2 (5.1)	12.8 (1.3)					
11:2	-15.1 (1.7)	-14.3 (1.1)	-9.1 (1.1)	-8.3 (1.2)	3.0 (2.0)					
8:2	-16.6 (1.8)	-10.4 (1.9)	-8.5 (1.1)	-5.1 (2.6)	24.1 (2.0)					

Table 7 Structural parameters obtained for LD complexes formed from cationic vesicles containing 2 and pDNA at a lipid:DNA weight ratio of 4:1 (derived from FISH modelling of their SANS data) measured at 298 K. *d*-spacing obtained from analysis of position of peak in SANS curve using the Bragg equation also shown. Figures in parenthesis indicate the standard errors on the fitted parameter values (derived from the least-squares variance-covariance matrix).

Lipids used to prepare the LD	Thickness (nm)	Number of layers	<i>d-</i> spacing ¹ (nm)	<i>d-</i> spacing ² (nm)
complexes				
1:2	4.54 (0.09)	56.0	6.18 (0.08)	6.2
8:2	4.12 (0.10)	56.0	5.71 (0.08)	5.7
9:2	4.33 (0.05)	56.0	5.91 (0.09)	5.9
10:2	4.47 (0.08)	56.0	6.06 (0.09)	6.1
11:2	4.39 (0.10)	56.0	6.04 (0.08)	6.0
12:2	4.71 (0.07)	56.0	6.38 (0.07)	6.4

¹*d*-spacing obtained from FISH modelling

²*d*-spacing obtained using Bragg equation

Table	8	Structura	l parameters	obtained	for	the	lipoplexes	formed	from	cationic	vesicles	of
E11cor	ntai	ning a 1:1	weight ratio	of 2 and ct	DNA	prep	ared at a we	eight mixi	ing rati	o of 4:1 (derived fr	om
FISH 1	noc	delling of	their SANS	data) meas	ured	at 2	$98 \pm 0.1 \text{ K}$. Figure	s in pa	arenthesis	indicate	the
standaı	d e	errors on	the fitted pa	arameter va	lues	(der	ived from t	he least-	square	s varianc	e-covaria	nce
matrix)).											

Concentration of 12:2	Thickness (nm)	Number of layers	<i>d</i> -spacing (nm)
1.0 mg/mL	4.68 (0.10)	55	6.37 (0.07)
0.5 mg/mL	4.88 (0.04)	55	6.35 (0.05)
0.25 mg/mL	4.57 (0.09)	55	6.28 (0.05)

Figures

Figure 1: Transmission electron micrograph of vesicles of 12 at a concentration of 1 mg/mL and a magnification of 150,000x.

Figure 2: Transmission electron micrograph of LD complexes prepared from a **12:2** with ctDNA at a weight ratio of 16:1 and a magnification of 635,000 and 467,000x respectively.

Figure 3 Gel electrophoresis of LD complexes containing a 4:1 and 8:1 weight ratio of lipid:pDNA prepared from vesicles of lipids 1 and 8 containing a 1:1 weight ratio of cationic lipid:2.

Figure 4 Luciferase expression in 1HAEo cells upon transfection with lipofectamine[®] as positive controls and the LD complexes using the cationic lipids **8-12** with a 1:1 weight ratio of DOPE at pDNA:lipid weight ratios of 1:2–1:16 (n=4 \pm SD).

References

- C. A. Hurley, J. B. Wong, J. Ho, M. Writer, S. A. Irvine, M. J. Lawrence, S. L. Hart, A. B. Tabor and H. C. Hailes, *Org. Biomol. Chem.*, 2008, 6, 2554–2559.
- (2) C. A. Hurley, J. B. Wong, H. C. Hailes and A. B. Tabor, J. Org. Chem., 2004, 69, 980–983.
- (3) M. Writer, C. A. Hurley, S. Sarkar, J. B. Wong, S. Irvine, F. Afzal, J. Ho, M. Odlyha, J. R. McEwan, M. J. Lawrence, A. B. Tabor, P. Ayazi Shamlou, H. C. Hailes and S. L. Hart, J. Liposome Res., 2006, 16, 373–389.
- P. Ettmayer, A. Billich, T. Baumruker, D. Mechtcheriakova, H. Schmid and P. Nussbaumer, Biorg. Med. Chem. Lett., 2004, 14, 1555–1558.
- (5) R. Csuk, A. Niesen, G. Tschuch and G. Moritz, *Tetrahedron*, 2004, **60**, 6001–6004.
- (6) Z. X. Hai, G. G. Zhong, L. G. Qiang, W. Y. Wei, W. P. Heng, L. Z. Yu, W. K. Nian, J. Chem. Ecology, 1986, 12, 1263–1271.
- (7) C. C. Leznoff and T. M. Fyles, *Chem. Commun.*, 1976, 251–252.