Supplementary information

Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor

Xudong Qu^a, Nan Jiang^a, Fei Xu^a, Lei Shao^a, Gongli Tang^a, Barrie Wilkinson^b and Wen Liu^a*

^aState Key Laboratory of Bio-organic Chemistry and Natural Products, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China. Email: wliu@mail.sioc.ac.cn, Tel +86-21-54925111, Fax: +86-21-64166128 ^bBiotica Technology Ltd, Chesterford Research Park, Cambridge CB10 1XL, UK

Materials and Procedures

Verification genotypes of mutant strains

All of the mutant strains' genotypes except *TL3001* were confirmed by PCR analysis. Genomic DNA of mutants was isolated following standard protocol ¹. With the wild type DNA as control, mutants were verified by PCR using primers listed in Table S2. For *TL3001*, five individual isolates of mutants genomic DNA together with wide type strains' were digested by *Xhol-Hin*dIII, and further analyzed by southern blotting with using 1.8 kb *Kpn*l fragment of ermE from pAGe-1 as the probe. Genotype analysis results were showed in Figure S7.

Strain/Plasmid	Characteristic(s)	Source/Reference
E. coli		
DH5a	Host for general cloning	Invitrogen
XL1-Blue MRF	Host for genomic library construction	Stratagene
S17-1	Donor strain for conjugation between E.coli and	1
	Streptomyces	
S. flaveolus		
DSM 9954	Wild type strain, SFA producing	DSMZ
Streptomyces		
oucplomytes		
DSM 9954	Wild type strain, SFA producing	DSM
TL3001	∆(<i>sfaK~sfaH</i>) gene replacement mutant, SFA	This study
	non-producing	
TL3002	$\Delta orf3$ in frame deletion mutant, SFA producing	This study
TL3003	$\Delta orf4$ in frame deletion mutant, SFA producing	This study
TL3005	$\Delta sfaR$ gene replacement mutant, SFA producing	This study
	with a reduced yield	
TL3006	Δ <i>sfaA</i> gene replacement mutant, SFA	This study
	non-producing	
TL3007	ΔsfaK in frame deletion mutant, SFA non-producin	ng This study
Plasmids		
pGEM-T easy	E. coli subcloning vector	Promega

Table S1. Bacterial strains and plasmids used in this study

pGEM-T easy	E. coli subcloning vector	Promega
pGEM 5zf	E. coli subcloning vector	Promega
pANT841	E. coli subcloning vector	AF438749
pSP72	E. coli subcloning vector	Promega
SuperCos 1	Cosmid vector for genomic library construction	Stratagene

pAGe-1	Containing erythromycin resistant gene ermE	From J.A.
		Salas
pKC1139	E.coli-Streptomyces shuttle vector for gene	2
	inactivation, temperature sensitive replication in	
	Streptomyces with apramycin resistance	
pKC5201	Derivative of pKC1139 with aparamycin gene	This study
	replaced by neomycin resistance gene from	
	SuperCos1	
pTL3101	SuperCos1-based, S. flaveolus genomic library	This study
	cosmid	
pTL3102	SuperCos1-based, S. flaveolus genomic library	This study
	cosmid	
pTL3103	SuperCos1-based, S. flaveolus genomic library	This study
	cosmid	
pTL3104	SuperCos1-based, S. flaveolus genomic library	This study
	cosmid	
pTL3105	SuperCos1-based, S. flaveolus genomic library	This study
	cosmid	
pTL3106	SuperCos1-based, S. flaveolus genomic library	This study
	cosmid	
pTL3107	SuperCos1-based, S. flaveolus genomic library	This study
	cosmid	
pTL3111	pKC1139 derivative for gene replacement of pks	This study
pTL3113	pKC5201 derivative for gene replacement of sfaA	This study
pTL3114	pKC1139 derivative for gene replacement of orf3	This study
pTL3115	pKC1139 derivative for gene replacement of sfaK	This study
pTL3116	pKC1139 derivative for gene replacement of sfaR	This study
pTL3117	pKC1139 derivative for gene replacement of orf4	This study
pTL3201	pSP72 derivative containing <i>ermE</i> resistant gene	This study

	from pAGe-1	
pTL3202	pTL3104 derivative for gene replacement	This study
pTL3203	pTL3202 derivative contains ermE resistant gene	This study
	from pTL3201	
pTL3205	pTL3102 derivative with the sfaA gene replaced by	This study
	acc(3)IV-oriT	
pTL3206	pANT841 derivative containing left arm for orf3 in	This study
	frame deletion	
pTL3207	pGEM 5zf derivative containing right arm for orf3 in	This study
	frame deletion	
pTL3208	pGEM 5zf derivative containing left arm for sfaK in	This study
	frame deletion	
pTL3209	pGEM 5zf derivative containing right arm for sfaK in	This study
	frame deletion	
pTL3210	pSP72 derivative containing 4.7 kb Bg/II-Kpnl	This study
	fragment of TL3102	
pTL3211	pSP72 derivative containing left and right arm for	This study
	sfaR in gene replacement	
pTL3212	pTL3211 derivative containing left and right arm for	This study
	orf4 gene replacement	
pTL3213	pET28a derivative containing Ndel-HindIII fragment	This study
	of sfaR for protein expression	

Table S2. Primers used in this study for verification of the genotype

orf3	orf3-gt-for: 5'-GCGCTGGATCTGCTGAAGGTCC-3'
	orf3-gt-rev: 5'- GATGTAGTCGCGCGAGATGCCG-3'
sfaK	sfaK-gt-for: 5'-ACTGATCAAGGCCGTACTCG-3'
	SfaK-gt-rev: 5'-GACCTTCGTGTCGTACACCTC-3'
sfaR	sfaR-gt-for: 5'-GTGAACGAGATACTCAGCGCC-3'
	sfaR-gt-rev: 5'-TCAGACCGGCTCTGTCTGCGG-3'
orf4	orf4-gt-for: 5'-GCAACGTGCACCACGGCAAGG-3'
	orf4-gt-rev: 5'-CCAAGGCCGAACGCGATCTCC-3'
sfaA	sfaA-gt-for: 5'-TTTCCATGGAAATCGGCTCGGGCGC
	sfaA-gt-rev: 5'-TTTAAGCTTGTATATCAACCGCCATTAG
	TTTTTCAATGGATG

Fig. S1 Alignment of the partial amino acid sequences of crotonyl-CoA reductases. Conserved residues shaded in yellow are used for degenerate primer design. S.avermt: CCR from *S. avermitilis* MA-4680 (Accession no. NP_823087); S.cinnam: CCR from *S. cinnamonensis* (Accession no. AAD53915); S.coelic: CCR from *S. coelicolor A3(2)* (Accession no. NP_630556); S.collin: CCR from *S. collinus* (Accession no. AAA92890); S.diasta: CCR from *S. diastaticus* (Accession no. AAR16523); S. fradia: CCR from *S. fradiae* (Accession no. CAA57474); S.hygros: CCR from *S. hygroscopicus* (Accession no. AAR32675); S.kanamy: CCR from *S. kanamyceticus* (Accession no. CAI96521); S.spHK80: CCR from *S. sp. HK803* (Accession no. AAQ84149).

	70	352
S.avermt	LVAV <mark>MASSVNYN</mark> SVW	RYL <mark>WMSLKRII</mark> GSH
S.cinnam	LVAV <mark>MASSVNYN</mark> SVW	RYL <mark>WMSLKRII</mark> GSH
S.coelic	LVAV <mark>MASSVNYN</mark> SVW	RYL <mark>WMSLKRII</mark> GSH
S.collin	LVAV <mark>MASSVNYN</mark> SVW	RYL <mark>WMSLKRII</mark> GSH
S.diasta	LVAV <mark>MASSVNYN</mark> SVW	RYL <mark>WMSLKRI</mark> VGSH
S.fradia	LVAV <mark>MASSVNYN</mark> TVW	RYL <mark>WMSLK</mark> K <mark>I</mark> VGSH
S.hygros	LVAV <mark>MASS</mark> I <mark>NYN</mark> TVW	RYL <mark>WM</mark> K <mark>LK</mark> K <mark>I</mark> VGSH
S.kanamy	LVAV <mark>MASSVNYN</mark> SVW	RYL <mark>WMSLKRII</mark> GSH
S.spHK80	LIAV <mark>MASS</mark> I <mark>NYN</mark> TVW	RYL <mark>WMSLKRI</mark> VGSH
Consensus	MASSVNYN	WMsLKrIi

Fig. S2 Restriction map of the 150 kb DNA region from *Streptomyces flaveolus* **DSM9954.** Three overlapping cosmids pTL3102, pTL3014 and pTL3106 were selected for further DNA sequencing. Solid rectangles indicate the probe loci. B, *Bam*HI.

Fig. S3 Alignment of the partial amino acid sequences of the AT domains from SFA cluster. Sequence in blocks A, B, C correlate with malonyl-CoA, (2S)-2-methylmalonyl-CoA, and putative (2S)-2-(2-oxobutyl)malonyl-CoA specificity. Residues shaded in bright yellow are essential for catalytic activity. The residue G marked in red is assumed to enlarge the binding cavity of Sfal-M13-AT to accept the more bulky substrate. Position of residues are corresponding to the prototypical AT, *E. coli* FabD ³.

	A	В		С
Malonyl-CoA	63	94	121	199
SfaF-M4-AT	RTVYAQ.	G <mark>hs</mark> Vge	<mark>R</mark>	HAF <mark>H</mark>
SfaG-M6-AT	RTAYAQ.	G <mark>hs</mark> lge	<mark>R</mark>	HAF <mark>H</mark>
SfaH-M7-AT	RTLYAQ.	G <mark>hs</mark> vge	<mark>R</mark>	HAF <mark>H</mark>
SfaH-M9-AT	RTVYAQ.	G <mark>hs</mark> vge	<mark>R</mark>	HAF <mark>H</mark>
SfaH-M10-AT	RTVYAQ.	G <mark>hs</mark> vge	<mark>R</mark>	HAF <mark>H</mark>
SfaH-M11-AT	DTGYGQ.	G <mark>hs</mark> vge	<mark>R</mark>	HAF <mark>H</mark>
SfaK-AT	DTRLAQ.	G <mark>hs</mark> yge	<mark>R</mark>	AAF <mark>h</mark>

(2S)-2-methylmalonyl-CoA

SfaE-M1-AT	RVDVVQG <mark>HS</mark> QGER
SfaF-M2-AT	RVDVVQG <mark>HS</mark> QGERYAS
SfaF-M3-AT	RVDVVQG <mark>HS</mark> QGERYAS
SfaG-M5-AT	RVDVVQG <mark>HS</mark> QGERYAS
SfaH-M8-AT	RVDVVQG <mark>HS</mark> QGER
SfaI-M12-AT	RVDVVQG <mark>HS</mark> QGER

(2S)-2-(2-oxobutyl)malonyl-CoA

SfaI-M13-AT	RVDVVQ	G <mark>hs</mark> qge	<mark>R</mark>	GA <mark>G</mark> H
-------------	--------	-----------------------	----------------	---------------------

Fig. S4 Alignment of the partial amino acid sequences of the KR domains from the SFA cluster. Boxed residues are important for NADPH binding and characteristic residues for each KR-type are marked in blue or red. The yellow shading is used to highlight catalytic residues for ketoreductase activity. Based on the model ⁴, the KR of M5 (with residue W141 and without H146) belongs to the A1 type to form *"syn"* L-products; M12 (with residues W141 and H146) belongs to the A2 type to form *"anti"* L-products; and the remaining are B1 type KRs (with the characteristic LDD motif and without P151) which form *"anti"* D-products. The SfaK-DH/KR didomain shows typical characteristic residues of B1-type KR (the NADPH binding site locates at -151 compare to others). Positions of residues are corresponding to SfaF-M4-AT.

A1-type	10	92	113	136 141	151
SfaG-M5-KR	GIGGLGGHVA	ERY	<mark>K</mark>	<mark>S</mark> gagv w gssg q aa	Y <mark>AAA</mark> N
A2-type			T7		** *****
SIAI-MIZ-KR	GIGALGPHLV	••••	<mark>K</mark>	<mark>S</mark> VAGV W GSGL H AP	<mark>Y</mark> AAA <mark>N</mark>
B1-type					
SfaE-M1-KR	A.GVIGGMIA	LD <mark>D</mark>	<mark>K</mark>	<mark>S</mark> AAATLGTPAQAN	YAAAN
SfaF-M3-KR	GTGTIGALCA	LD D	<mark>K</mark>	<mark>S</mark> TSGLFGAPGQGN	YAAG <mark>N</mark>
SfaF-M4-KR	GTGALGGHTA	LD D	<mark>K</mark>	ALGGVVGGAGQAN	YAAAN
SfaG-M6-KR	GTGALGGLVA	LD D	<mark>к</mark>	<mark>S</mark> AAGTFGAPGQGN	YAAAN
SfaH-M7-KR	GTGALGRLVA	LD D	<mark>к</mark>	<mark>S</mark> LAGVVGSAGQGG	YA A AN
SfaH-M8-KR	GTGVIGALVA	LD D	<mark>к</mark>	<mark>S</mark> LAGVVGSAGQGG	YA A AN
SfaH-M9-KR	GTGALGARVA	LAD	<mark>к</mark>	<mark>S</mark> LAGTLGNPGQAA	YA A AN
SfaH-M10-KR	GTGALGRVVA	LD D	<mark>к</mark>	SLAGVVGSAGQGG	YA A AN
SfaH-M11-KR	ATGSIGTLVV	LD D	<mark>к</mark>	SAAGLLGAPGQAN	YA A AN
SfaI-M13-KR	ASGDIGALVA	LD <mark>D</mark>	<mark>к</mark>	<mark>S</mark> VAGTFGGLGQGN	YA A G <mark>N</mark>

	SfaK-	DH/KR	domain
--	-------	-------	--------

-151	10	92	113	136	151
GGGAVGDVIA	.GARGITARVAR	.VR D	. <mark>K</mark>	<mark>S</mark> IAGVTGNRGQTD <mark>Y</mark>	A A A <mark>N</mark>

Fig. S5 Alignment of the partial amino acid sequences of the DH, ER and ACP domains from SFA cluster. Bright yellow is used to highlight catalytic residues for dehydratation **a**), enoyl reduction **b**) and acyl carrier activity **c**). SfaH-M13-DH and SfaF-M3-DH are anticipated to be inactive due to the lack of histidine 68. Position of residues are referenced relative to SfaE-M1-DH, SfaE-M1-ER and SfaE-LM-ACP, respectively.

а

ũ				
	36	68	72	77
SfaE-M1-DH	HPLLA	HTVI	I <mark>G</mark> TAL	L <mark>P</mark>
SfaG-M6-DH	HPLL <mark>S</mark>	<mark>h</mark> tvf	r <mark>g</mark> sali	L <mark>P</mark>
SfaH-M7-DH	<mark>HPLL</mark> R	<mark>h</mark> svi	J <mark>g</mark> tpv:	L <mark>P</mark>
SfaH-M8-DH	<mark>HPLL</mark> G	<mark>h</mark> vvi	. <mark>g</mark> ttl:	L <mark>P</mark>
SfaH-M10-DH	<mark>HPLL</mark> G	<mark>h</mark> aii	. <mark>g</mark> pal:	L <mark>P</mark>
SfaH-M11-DH	<mark>HPLL</mark> G	<mark>h</mark> tvi	DTVL	L <mark>P</mark>
SfaH-M13-DH	<mark>HPLL</mark> G	Ε		A <mark>P</mark>
SfaF-M3-DH	HPLLG		••••	L <mark>P</mark>

b

	114	130
SfaE-M1-ER	RV <mark>L</mark> VH <mark>A</mark> AA <mark>GG</mark> V <mark>G</mark> MA <mark>A</mark> VRV	7 <mark>a</mark> r
SfaG-M6-ER	RV <mark>L</mark> VH <mark>A</mark> AA <mark>GG</mark> V <mark>G</mark> MA <mark>A</mark> VRV	7 <mark>a</mark> r

С

	34
SfaE-LM-ACP	GLR <mark>S</mark> L
SfaE-M1-ACP	GFD <mark>S</mark> L
SfaF-M2-ACP	GFD <mark>S</mark> L
SfaF-M3-ACP	GFD <mark>S</mark> L
SfaF-M4-ACP	GFD <mark>S</mark> L
SfaG-M5-ACP	GFD <mark>S</mark> L
SfaG-M6-ACP	GFD <mark>S</mark> L
SfaH-M7-ACP	GFD <mark>S</mark> L
SfaH-M8-ACP	GFD <mark>S</mark> L
SfaH-M9-ACP	gfd <mark>s</mark> M
SfaH-M10-ACP	GFD <mark>S</mark> L
SfaH-M11-ACP	GFD <mark>S</mark> L
SfaI-M12-ACP	GFD <mark>S</mark> I
SfaI-M13-ACP	GFD <mark>S</mark> L
SfaK-ACP	GVD <mark>S</mark> L

Fig. S6 a) Alignment of substrate specificity-conferring residues for the SFA NRPS SfaD. Bright yellow is used to highlight key residues of adenylation domains for substrate selectivity. GrsA from *Brevibacillus brevis* (Accession no. P0C061); SfaD-M14-A, SfaD-M15-A, SfaD-M16-A are from this study. **b)** Adenylation domains with most identical substrate specificity-conferring motifs are shown. Conserved residues are highlighted in red. Positions of residues are referenced relative to GrsA.

а	235	239	278	299	322	330	517
	200	235	270	255	522	550	517
GrsA	DA S	sv <mark>w</mark>	<mark>T</mark>	<mark>I</mark> T <mark>A</mark>	<mark>A</mark>	<mark>TC</mark>	<mark>K</mark>
SfaD-M14-A	<mark>DA</mark> S	ST <mark>Y</mark>	<mark>W</mark>	<mark>V</mark> V <mark>G</mark>	<mark>G</mark>	<mark>TF</mark>	<mark>K</mark>
SfaD-M15-A	DI S	ST <mark>Y</mark>	<mark>C</mark>	<mark>L</mark> T <mark>G</mark>	<mark>A</mark>	<mark>AF</mark>	<mark>K</mark>
SfaD-M16-A	<mark>dv</mark> h	IV <mark>Q</mark>	<mark>F</mark>	<mark>S</mark> Q <mark>A</mark>	<mark>H</mark>	<mark>VV</mark>	<mark>K</mark>

b

SfaD-M14-A:	DAYWVGGTFK
Val	DAFWIGGTFK

SfaD-M15-A: DIYCLGAAFK No hits

SfaD-M16-A: DVQFSAHVVK Pro DVQFAAHVVK

Fig. S7 Verification of S. flaveolus mutant genotypes

- a) Construction of the orf3 inframe deletion mutant and the size of the PCR fragments from wild-type strain and TL3002.
- b) PCR analysis of TL3002 (lane 1) and wild-type strain (lane 3). Lane 2, molecular weight marker.
- c) Construction of the *sfaK* inframe deletion mutant and the size of the PCR fragments from wild-type strain and TL3007.
- d) PCR analysis of TL3007 (lane 1) and wild-type strain (lane 3). Lane 2, molecular weight marker.
- e) Construction of the *sfaR* gene deletion mutant and the size of the PCR fragments from wild-type strain and TL3005.
- f) PCR analysis of TL3005 (lane 1) and wild-type strain (lane 3). Lane 2, molecular weight marker.
- g) Construction of the orf4 gene deletion mutant and the size of the PCR fragments from wild-type strain and TL3003.
- h) PCR analysis of TL3003 (lane 3) and wild-type strain (lane 2). Lane 1, molecular weight marker.
- i) Construction of the pks deletion mutant (partial sfaF, sfaH and intact sfaG) and the restriction map of TL3001 showing the fragment sizes upon *Xhol-Hin*dIII digestion.
- j) Gel (left) and Southern (right) analysis of TL3001 genomic DNA (Lanes 2~6 are five individual isolates). A 1.8 kb *Kpn*l fragment from pAGe-1 containing *erm*E was used as the probe. *Xhol-Hin*dIII digested TL3001 and wild-type strain genomic DNA (Lane 7) were tested by Southern analysis. Lane 1, molecular weight marker.
- k) Construction of the *sfaA* gene replacement mutant and the size of the PCR fragments from wild-type strain and TL3006.
- PCR analysis of TL3006 (lane 2) and wild-type strain (lane 3). Lane 1, molecular weight marker.

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2011

14

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2011

Fig. S8 10% SDS-PAGE of purified SfaR.

Lane1: SfaR; Lane2: protein ladder (Fermentas, SM0431)

Fig. S9 Sequence analysis of SfaK-DH/KR didomain.

a) The DH/KR didomain sequence; Characteristic residues for NADPH binding

are marked in blue; and active site residues for KR are marked in red (also see

Figure S4).

ATRTGPDGPGPDGPGRQTAVPEPETMPAGASDTVRHVVEPVPEEPPAGPL PTLTRAAVSGGGAVGDVLATLLKERGTEVVSDPAGCDALLLLDALDGGDYTL PGRFTDIRAAVLGGLRTLLLATCHDAGPAGSGVHGLARALSREHPGLAVTAV DLPAGQPAEEAARTLLAELGGSRPSVTHTDGRRAVWRTRPAPLPAADVTAG DLGLDRDSVVLLTGGARGITARVARALATLTGCHLELVGRSEPVTGTVLTDAD LRTRLIAEGGRDPAGIERAVRAHAAGRQVRQCLDDLAGPAASVRYHRADVR DPERLGAVLDDVYARHGRLDTVVHAAGQVRDRLLRDKSPDEFAEVYDTKVA GARALAARLRPGLRHLVLFGSIAGVTGNRGQTDYAAANDALDTMARQWSG RVADRVLALDWGPWAADAGGMVTAELERAYARNGIGLIDPDDGVRAFLREL AFGRDPQVLLTVGDPAGFGSALD

b) The achieved data from Motif Scan. Characteristic residues for NADPH dependent dehydratase family are shown in the top of each line; below is the sequence of DH/KR didomain (position: 249-474, raw-score = -61.1, N-score =

References

1. T. Kieser, M. Bibb, M. Butter, K. F. Chater and D. A. Hopwood, Practical Streptomyces

Genetics, The John Innes Foundation, Norwich., 2001.

2. M. Bierman, R. Logan, K. O'Brien, E. T. Seno, R. N. Rao and B. E. Schoner, *Gene*, 1992,**116**, 43–49.

3. C. D. Reeves, S. Murli, G. W. Ashley, M. Piagentini, C. R. Hutchinson and R. McDaniel, *Biochemistry*, 2001, **40**, 15464–15470.

4. A. T. Keatinge-Clay, Chem. Biol., 2007, 14, 898–908.