Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2011 **Supplementary image 1.1:** PKA phosphorylated NFAT *m/z* 1257.55

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2011 **Supplementary image 1.2:** PKA phosphorylated NFAT *m/z* 1273.54

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

```
Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is \ensuremath{\mathbb{O}} The Royal Society of Chemistry 2011
```


Part A: mass shift of 80 m/z after the alkaline phosphatase treatment. Part B: MS/MS spectrum and peak annotation. Mascot search results and ion table.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2011 **Supplementary image 1.5:**PKA phosphorylated NFAT *m/z* 1491.54

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Monoisotopic mass of neutral peptide Mr(calc): 1771.8393

Fixed modifications: Carbamidomethyl (C)

Variable modifications:

C)

S3 $\,$: Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 lons Score: 109 Expect: 1.4e-12 $\,$

Matches (highlighted): 25/353 fragment ions using 29 most intense peak

	#	b	b ⁰	Seq.	У	у*	y ⁰	#
	1	88.0393	70.0287	S				16
	2	185.0921	167.0815	Р	1587.8377	1570.8111	1569.8271	15
	3	254.1135	236.103	S	1490.7849	1473.7584	1472.7744	14
	4	355.1612	337.1506	Т	1421.7635	1404.7369	1403.7529	13
	5	426.1983	408.1878	Α	1320.7158	1303.6892	1302.7052	12
	6	527.246	509.2354	т	1249.6787	1232.6521	1231.6681	11
	7	640.3301	622.3195	L	1148.631	1131.6045	1130.6204	10
2	8	727.3621	709.3515	S	1035.5469	1018.5204	1017.5364	9
	9	840.4462	822.4356	L	948.5149	931.4884	930.5043	8
	10	937.4989	919.4884	Р	835.4308	818.4043	817.4203	7
	11	1024.5309	1006.5204	S	738.3781	721.3515	720.3675	6
	12	1137.615	1119.6044	L	651.3461	634.3195	633.3355	5
	13	1266.6576	1248.647	E	538.262	521.2354	520.2514	4
	14	1337.6947	1319.6841	Α	409.2194	392.1928		3
	15	1500.758	1482.7475	Y	338.1823	321.1557		2
	16			R	175.119	158.0924		1

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2011 **Supplementary image 1.7:** PKA phosphorylated NFAT *m/z* 1928.93

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is O The Royal Society of Chemistry 2011

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is O The Royal Society of Chemistry 2011

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is O The Royal Society of Chemistry 2011

Score	Expect	ppm	Hit	Protein	Peptide
15.9	0.026	33.7	1	GST-NFAT	SPSTATLp(S)LPSLEAYRDPSCLSPASSLSSR
15.9	0.026	33.7	1	GST-NFAT	SPSTAp(T)LSLPSLEAYRDPSCLSPASSLSSR
15.9	0.026	33.7	1	GST-NFAT	SPSp(T)ATLSLPSLEAYRDPSCLSPASSLSSR
15.9	0.026	33.7	1	GST-NFAT	SPp(S)TATLSLPSLEAYRDPSCLSPASSLSSR
13.2	0.048	33.7	1	GST-NFAT	SPSTATLSLPp(S)LEAYRDPSCLSPASSLSSR
11	0.08	33.7	1	GST-NFAT	p(S)PSTATLSLPSLEAYRDPSCLSPASSLSSR

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Elestopic program and the string of the sphere string of the sphere sphere sphere string of the sphere sphe

Monoisotopic mass of neutral peptide Mr(calc): 1384.6024 Fixed modifications: Carbamidomethyl (C)

Variable modifications:

S2 : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 lons Score: 77 Expect: 4.1e-05

Matches (Bold Red): 12/220 fragment ions using 12 most intense peaks

#	b	b ⁰	Seq.	у	у*	y ⁰	#
1	72.0444		Α				12
2	141.0658	123.0553	S	1216.5957	1199.5691	1198.5851	11
3	240.1343	222.1237	V	1147.5742	1130.5477	1129.5636	10
4	341.1819	323.1714	Т	1048.5058	1031.4793	1030.4952	9
5	470.2245	452.214	E	947.4581	930.4316	929.4476	8
6	599.2671	581.2566	E	818.4155	801.389	800.405	7
7	686.2992	668.2886	S	689.3729	672.3464	671.3624	6
8	872.3785	854.3679	W	602.3409	585.3144		5
9	985.4625	967.452	L	416.2616	399.235		4
10	1042.484	1024.4734	G	303.1775	286.151		3
11	1113.5211	1095.5105	А	246.1561	229.1295		2
12			R	175.119	158.0924		1

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment. Part B: MS/MS spectrum and peak annotation from Biotools and ion table from Mascot.

```
Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is \ensuremath{\mathbb{O}} The Royal Society of Chemistry 2011
```

1235.5

1372.60

1539.60

1636.6

1803.65

1904.70

2088.

1991.73

Supplementary image 2.2: in vivo phosphorylated NFAT m/z 2262.96

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment. Part B: MS/MS spectrum and peak annotation and ion table from Mascot.

30

25

20

15

10

5 0 359 043

400

272 079

200

1138.40

1010 34

873.290

706.29

442

1156.418

1028 36

891.3009

724.3025

460.2514

175.119

627.2498 609.2392

359.2037 341.1932

2262.880

y 20

2164.940 y-Pi 20

2200

y-Pi 18

2000

b 13

1379.

/-Pi

142

1400

1590 435

1600

1800

1137.377 b-Pi 12

1155.322 y-Pi 10

1200 m/z

1028.158

1000

793 139 y-Pi 7

800

626 135

600

Pi 6

```
Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is \ensuremath{\mathbb{O}} The Royal Society of Chemistry 2011
```

439.1701

272.171

175.119

18

Ρ

R

421.159

1173.345 v 10

1200 m/z

81

800

1000

1441.44

1400

1600

1800

2000

2200

272 079

400

600

200

5

0

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment. Part B: MS/MS spectrum and peak annotation from Biotools and ion table from Mascot. Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2011

Supplementary image 2.5: in vivo phosphorylated NFAT m/z 2382.90

B)

QPPYp(S)PHHp(S)Pp(T)PSPHGp(S)PR

1000

1500

m/z

500

S5 S9 : Phospho (ST), with neutral losses 0.0000(shown in table), 97.9769 T11 : Phospho (ST), with neutral losses 0.0000(shown in table), 97.9769 S17 : Phospho (ST), with neutral losses 0.0000(shown in table), 97.9769

lons Score: 23 Expect: 0.0011 Matches (highlighted): 18/575 fragment ions using 39 most intense peaks

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment. Part B: MS/MS spectrum and peak annotation from Biotools and ion table from Mascot.

Supplementary image 2.6: in vivo phosphorylated NFAT m/z 2382.90

B)

#	Seq.	у	#
1	Q		19
2	Р	2254.7909	18
3	Р	2157.7382	17
4	Y	2060.6854	16
5	S	1897.6221	15
6	Р	1730.6237	14
7	Н	1633.5709	13
8	Н	1496.512	12
9	S	1359.4531	11
10	Р	1192.4548	10
11	T	1095.402	9
12	Р	994.3543	8
13	S	897.3016	7
14	Р	730.3032	6
15	Н	633.2504	5
16	G	496.1915	4
17	S	439.1701	3
18	Р	272.1717	2
19	R	175.119	1

Variable modifications:

S5 : Phospho (ST), with neutral losses 0.0000(shown in table), 97.9769 S9 : Phospho (ST), with neutral losses 0.0000(shown in table), 97.9769

S13 S17 : Phospho (ST), with neutral losses 0.0000(shown in table), 97.9769 : Phospho (ST), with neutral losses 0.0000(shown in table), 97.9769

Ions Score: 23 Expect: 0.0011

Matches (highlighted): 12/581 fragment ions using 23 most intense peaks

Part A: Mass shift of 80 m/z after the alkaline phosphatase treatment.

Part B: MS/MS spectrum and peak annotation from Biotools and ion table from Mascot.

B)

#	Seq.	у	#
1	۷		29
2	Е	3036.401	28
3	Р	2907.358	27
4	V	2810.306	26
5	G	2711.237	25
6	E	2654.216	24
7	D	2525.173	23
8	L	2410.146	22
9	G	2297.062	21
10	S	2240.041	20
11	Р	2171.019	19
12	Р	2073.967	18
13	Р	1976.914	17
14	Р	1879.861	16
15	Α	1782.808	15
16	D	1711.771	14
17	F	1596.744	13
18	Α	1449.676	12
19	Р	1378.639	11
20	Ε	1281.586	10
21	D	1152.543	9
22	Y	1037.516	8
23	S	874.453	7
24	S	787.4209	6
25	F	700.3889	5
26	Q	553.3205	4
27	Н	425.2619	3
28		288.203	2
29	R	175.119	1

VEPVGEDLGp(S)PPPPADFAPEDYSSFQHIR

Monoisotopic mass of neutral peptide Mr(calc): 3232.4390 Fixed modifications: Carbamidomethyl (C)

Variable modifications:

S10 : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000

lons Score: 106 Expect: 4.1e-12

Matches (highlighted): 17/706 fragment ions using 13 most intense peaks

Supplementary image 3: TiO₂ purification of α - and β - casein dilution series

Supplementary image3: 3000 laser shots were accumulated with the following laser power settings: sample without TiO_2 treatment at 31%; TiO_2 treated samples from 500 fmol to 50 fmol at 40%; 25 and 12 fmol samples at 56% and 61% respectively. In all other cases 2000 laser shots were accumulated. The * denotes the oxidized phosphopeptides, and the numbers indicate phosphopeptides, which are also detailed in Supplementary Table 3.

Supplementary image 4: ITO purification of $\alpha-$ and $\beta-$ casein dilution series

Supplementary image 4: A dilution series of α -and β -casein peptides were spotted on ITO-coated glass slides and treated according to the optimized protocol for selective retention of phosphopeptides. Numbers indicate detected phosphopeptides described in detail in Supplementary Table 3. Two thousand laser shots were accumulated in each spectrum under the following laser settings: 36% for 50 and 25 fmol; 40 % for 12, 6, 3 and 1.5 fmol; and 48 % for 0.75 fmol.

Supplementary image 5: ITO purification of 500 fmol α - and β - casein

Supplementary image 5: A mixture of α -and β -casein peptides (500 fmol each) was analyzed using the phosphopeptide purification optimized protocol in this study. Two thousand laser shots were accumulated with 40 % laser power setting. 18 different phosphopeptides were detected, as well as 9 additional oxidized forms. The * denotes the oxidized phosphopeptides, and the numbers indicate phosphopeptides, which are also detailed in Supplementary Table 3.

Supplementary image 6 and 7

For comparison of the different enrichment platforms (ITO vs TiO₂-enrichment & AnchorChip) the sensitivity of the laser power setting was kept constant (2000 laser shots, 50 % laser power, 64 % offset and 15 % range). Spectral acquired from the ITO plate at two different laser settings, after identical the planar-enrichment procedure, are also shown in Supplementary image 6, panels A and C. The spectra acquired from the AnchorChip plate after TiO₂-enrichment is shown in panel B. We observed best measurements of the resolution for the peptides from ITO (6C) when the laser power was at 2000 laser shots, 46% laser power, 64 % offset, 15% range. However, to facilitate comparisons between measurements, the laser settings were kept constant throughout the entire dilution series test (Supplementary image 6A and B; manuscript figure 3).

Optimising the laser intensity for each surface, to facilitate optimal ionization of the peptides can be due to several factors that we can only speculate on. Obviously the surface chemistry the ITO plate is different to the AnchorChip. This could have a direct impact on the ionization efficiency of peptides in general. On the other hand the effect

Supplementary image 6 and 7

may be more specific and only related to the ionization of (phospho)-peptides. One might consider that the ITO surface retains phosphopeptides more efficiently and therefore requires different laser settings. Another possibility is that the flat surface method (ITO) does not adhere phosphopeptide samples efficiently chromatographic techniques, and there is more left to analyse ultimately. Of course there could be a combination of the above reasons and more that we are not sure of at this point. Nevertheless, we noticed this phenomenon that appeared to be ionization efficiency when trying to compare the planar surface enrichment with chromatographic method (Figure 3 in manuscript and Supplementary images 3 and 4). In the sensitivity test on a single peptide (Manuscript figure 3) the laser intensity was kept constant, which lead to low resolution for samples analyzed from ITO. However, when analyzing the mixture of α -and β -casein the laser intensity was adjusted to produce best resolution for both of the samples (Supplementary image 3 and 4). These results also show that less laser power is required for the ITO method.

Finally, the dilution series presented in Supplementary image 4 (α -and β -casein mixture enrichment on ITO) are presented here as a "zoomed images". The 6 fmol loading compares with the loading in figure 3 of the manuscript, but with optimal laser settings.

Supplementary image 6 and 7

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

Supplementary image S1: PIM phosphorylated NFAT m/z 1257.5

Supplementary image S1*: PIM phosphorylated NFAT *m/z* 1273.59

Kouvonen et al.

Kouvonen et al.

N:o	m/z	start	Sequence		Modifications (Mascot)	Mascot score	*)
1	1257.55	1	MPp(S)TSFPVPSK		phos@3	77	1.1
1*	1273.54	1	ox(M)Pp(S)TSFPVPSK	11	Ox@1, phos@3	42	1.2
2	1385.61	244	Ap(S)VETEESWLGAR		phos@245	106	1.3
2*	1417.59	244	Ap(S)VETEESox(W)LGAR	255	phos@245, Ox@252	79	1.4
2	1/01 78	337		340	pbos@338 or 330	24	15
3	1491.70	557	Rp(TT)LEQFF3VAER		phos@336 01 339	24	1.5
4	1772.82	151	SPp(S)TATLSLPSLEAYR	166	phos@153	109	1.6
5	1928.93	150	RSPp(S)TATLSLPSLEAYR	166	phos@153	61	1.7
6	2441.19	1	MPp(S)TSFPVPSKFPLGPAAAVFGR	23	phos@3	53	1.8
6*	2457.22	1	ox(M)Pp(S)TSFPVPSKFPLGPAAAVFGR	23	Ox@1, phos@3	51	1.9
7	3217.62	151	p(S)Pp(ST)Ap(T)Lp(S)LPp(S)LEAYRDPS carb(C)LSPASSLSSR	180	phos@151,154,156,158 or 161; carb@169	10 to 15	1.10
8	3373.86		unknown		1 x phos		1.11

NFATc1 was phosphorylated with PKA and four different phosphorylation sites were detected (amino acids 3, 153, 245 and 338 or 339) in nine different peptides (peptides 1, 1*, 2, 2*, 3, 4, 5, 6 and 6*). Serine phosphorylation at site three was detected in four different peptides (peptides 1, 1*, 6, 6*) due to methionine oxidation (peptides 1* and 6*) and missed cleavage (peptides 6 and 6*). Phosphorylation at S-153 was detected two times due to missed cleavage (peptides 4 and 5). Serine 245 was detected to be phosphorylated in peptide 2 and its doubly oxidized from (peptide 2*). Peptide number 3 was singly phosphorylated from sites T-338 or T-339. No reliable phosphorylation, ox = oxidation, *) = supplementary image number.

Supplementary table 2

Pim-1 phosphorylated peptides used in method optimization (figure 2)

m/z neutral loss in MS/MS		Mass shift after alkaline phosphatase treatment	*)
1257.56	-98 m/z	-80 m/z	S1
1273.55	-98 m/z	-80 + 16 m/z	S1*
1385.61	-98 m/z	-80 m/z	1.3
1417.63	-98 m/z	-80 m/z	S2*
1491.77	-98 m/z	-80 m/z	S3
2142.95	-98 m/z	-80 m/z	S4
2441.21	-98 m/z	-80 m/z	S5
2457.20	-98 m/z	-80 + 16 m/z	S5*
2962.60	-98 m/z	-80 m/z	S6
3042.32	-98 m/z	-80 m/z	S7
3217.51	-98 m/z	-80 m/z	S8
3233.45	-98 m/z	-80 m/z	S8*
3361.68		-80 m/z	S9
3373.58	-98 m/z	-80 m/z	S10

Supplementary Table 3. Observed phosphopeptides derived from 500 fmol of α - and β -caseins

		Protein	Sequence	Number of	$[M+H]^+$	Observed phosphopeptides	Observed phosphopeptides
Number	Peptide sequence	(Swiss-Prot) ^a	Start-End	phosphoryl groups	(<i>m</i> /z) ^b	with TiO ₂ coated glass slide ^c	with ITO coated glass slide ^d
1	EQL <u>S</u> T <u>S</u> EENSK	CASA2_BOVIN	141-151	2	1411.5	x	
2	TVDME <u>S</u> TEVFTK	CAS2_BOVIN	153-164	1	1466.61	x	x
2*	(Oxidized)				1482.61	x	x
3	TVDME <u>S</u> TEVFTKK	CAS2_BOVIN	153-165	1	1594.71	x	x
3*	(Oxidized)				1610.70	x	x
4	VPQLEIVPN <u>S</u> AEER	CAS1_BOVIN	121-134	1	1660.79	x	x
5	YLGEYLIVPN <u>S</u> AEER	CAS1_BOVIN		1	1832.85	x	x
6	DIG <u>S</u> E <u>S</u> TEDQAMEDIK	CAS1_BOVIN	58-73	2	1927.69	x	x
6*	(Oxidized)				1943.69	x	x
7	YKVPQLEIVPN <u>S</u> AEER	CAS1_BOVIN	119-134	1	1951.95	x	x
8	FQ <u>S</u> EEQQQTEDELQDK	CASB_BOVIN	48-63	1	2061.83	x	x
9	IEKFQ <u>S</u> EEQQQTEDELQDK	CASB_BOVIN	45-63	1	2432.05	x	x
10	FQ <u>S</u> EEQQQTEDELQDKIHPF	CASB_BOVIN	48-67	1	2556.09		x
11	NTMEHV <u>SSS</u> EE <u>S</u> IISQETYK	CAS2_BOVIN	17-36	4	2618.90		x
11*	(Oxidized)				2634.90		x
12	VNEL <u>S</u> KDIG <u>S</u> E <u>S</u> TEDQAMEDIK	CAS1_BOVIN	52-73	3	2678.02		x
12*	(Oxidized)				2694.02	x	x
13	QMEAESISSSEEIVPNSVEQK	CAS1_BOVIN	74-94	5	2720.91	x	x
13*	(Oxidized)				2736.91		x
14	NTMEHV <u>SSS</u> EE <u>S</u> IISQETYKQ	CAS2_BOVIN	17-37	4	2746.96		x
14*	(Oxidized)				2762.96	x	x
15	EKVNEL <u>S</u> KDIG <u>S</u> E <u>S</u> TEDQAMEDIK	CAS1_BOVIN	50-73	3	2935.16		x
15*	(Oxidized)				2951.16		x
16	NANEEEYSIG <u>SSS</u> EE <u>S</u> AEVATEEVK	CAS2_BOVIN	61-85	4	3008.03	x	x
17	NANEEEYSIG <u>SSS</u> EE <u>S</u> AEVATEEVK	CAS2_BOVIN	61-85	5	3088.00	x	x
18	RELEELNVPGEIVE <u>SLSSS</u> EESITR	CASB_BOVIN	16-40	4	3122.27	x	x
19	KNTMEHV <u>SSS</u> EE <u>S</u> IISQETYKQEK	CAS2_BOVIN	16-39	4	3132.20		x
19*	(Oxidized)				3148.19	x	x

^aP02662 CAS1_BOVIN, P02663 CAS2_BOVIN, P02666 CASB_BOVIN

^bKnown phosphopeptides detected by MALDI-MS (Stensballe 2004, Larsen 2005).

^cPhosophopeptides reported in Imanishi *et al.* (2009)

^dPhosphopeptides reported in this study