

Supplementary Information

the intensity of blocking ApoE/A β interaction (%)

Figure S1. Alanine scanning mutagens of ApoE249-256 and A β 17-21. (A) Alanine scanning of ApoE249-256,; (B) Alanine scanning of A β 17-21. Peptides (Left) corresponding to the sequences of ApoE 249-256 or A β 17-21 were synthesized. The sites for alanine mutagens are denoted in bold. The concentration of each peptide was 300 μ M. The values are means \pm SD, n = 3 replicate wells.

 $\label{eq:mapping} \begin{array}{c} \mbox{Mapping ApoE/A}\beta \mbox{ Binding Regions to Guide Inhibitor Discovery} \\ \mbox{Qian Liu, Wei-hui Wu and Yan-mei Li} \end{array}$

Figure S2. The compounds (a) QIRLQAEA (ApoE249-256), (b) LVFFA (A β 17-21), (c) QIRLQAE (ApoE249-255), (d) Congo Red, (e) LVFFAE (A β 17-22) and (f) A β 12-28 show their dose-dependent inhibition of ApoE4/A β binding at increasing compound concentrations. The values are means ± SD, n = 3 replicate wells.

Mapping ApoE/A β Binding Regions to Guide Inhibitor Discovery Qian Liu, Wei-hui Wu and Yan-mei Li

Figure S3. The compounds (a) QIMLQAEA (ApoE249-256^{251-Met}), (b) QILLQAEA (ApoE249-256^{251-Phe}), (c) QIVLQAEA (ApoE249-256^{251-Leu}), (d) QIFLQAEA (ApoE249-256^{251-Ile}), (e) QIILQAEA (ApoE249-256^{251-Val}), (f) LVFIA (A β 17-21^{20-Ile}), (g) X-34 show their dose-dependent inhibition of ApoE4/A β binding at increasing compound concentrations. The values are means ± SD, n = 3 replicate wells.

Mapping ApoE/A β Binding Regions to Guide Inhibitor Discovery Qian Liu, Wei-hui Wu and Yan-mei Li

K_d calculation:

There are two dependent heterogeneous equilibria in the competitive assay, shown as follows,

$$K_{d,x} = \frac{[A\beta]_I[x]}{[A\beta - x]_I} \quad (1)$$

$$K_{d,ApoE} = \frac{[A\beta]_{I}[ApoE]}{[A\beta - ApoE]_{I}} \quad (2)$$

where $K_{d,x}$ is the dissociation constant between immobilized A β 1-40 and small compound (x), subscript I means immobilized, and A β -x means the complex of A β 1-40 and small compound.

The denotation in formula (2) is similar to that in formula (1).

Concentration (IC_{50}) of such inhibitory compounds at which half inhibitory ability compared to that of well containing no ApoE can be read directly from Figure 3. At this specific concentration, the amounts of A β 1-40-ApoE complex and A β 1-40-x complex will be the same and by combining two equilibrium formulas (1, 2) together, the following formula for K_{d,x} can be obtained,

$$K_{d,x} = \frac{[x] * K_{d,ApoE}}{[ApoE]} \quad (3)$$

According to Adam's work [S1], the stoichiometry of A β 1-40 to ApoE binding is 1:1. Therefore it is reasonable to assume the same stoichiometry for x to ApoE4 binding. Taking the fact that [ApoE] is half of the total concentration into account [ApoE]₀ as well, formula (3) can be converted to:

$$K_{d,x} = \frac{(IC_{50} - [ApoE]_0 / 2) * K_{d,ApoE}}{[ApoE]_0 / 2}$$
(4)

from which $K_{d,x}$ can be easily calculated ($K_{d,ApoE}$ =20 nM, according to the report S1).

Mapping ApoE/A β Binding Regions to Guide Inhibitor Discovery Qian Liu, Wei-hui Wu and Yan-mei Li