Electronic supplementary information (ESI)

An intein-cassette integration approach

used for the generation of a split TEV protease activated by conditional protein splicing

Tim Sonntag and Henning D. Mootz*

Contribution from:

TU Dortmund University

Faculty of Chemistry - Chemical Biology

Otto-Hahn-Str. 6

44227 Dortmund

Germany

(*) corresponding author (present address):

University of Muenster

Institute of Biochemistry

Wilhelm-Klemm-Str. 2

48149 Münster

Germany

Fax: +49-251-83-33007

E-mail: Henning.Mootz@uni-muenster.de

Table of contents

Supplemental Figures	S3
Figure S1. DNA-sequence of the CPS cassette	S3
Figure S2. Positions of integration of the CPS cassette into the TEV protease	S4
Figure S3. Influence of the incubation time and concentration of the small molecule on the	orotein
trans-splicing reaction	
Figure S4: Amino acid sequence of the TEV constructs and reporter proteins	S6
Experimental Procedures	S7
Small molecules	
Western Blots	S7
General yeast procedures	
Generation of a rapamycin-resistant yeast strain	S8
Genetic insertion of the CPS intein cassette into target genes	
Identification and modification of the active TEV-CPS variants	S9
TEV-CPS mediated manipulation of EGFP localization and analysis by fluorescence micros	scopy
	S10
Table S1. S. cerevisiae strains used in this study	S12
Table S2. List of generated plasmids	S13
Table S3. List of primers	
Table S4. Primers and plasmids for the integration of the CPS cassette into GST-TEV	
Supplemental References	S17

Supplemental Figures

Figure S1. DNA-sequence of the CPS cassette

The CPS cassette (3207 bp from position 1 of Int^{N} to position +1 of Int^{C}) is encoded in the template vector pTS13.

Figure S2. Positions of integration of the CPS cassette into the TEV protease

(A) The primary amino acid sequence of the TEV protease used in these experiments $(\text{TEV S219V})^1$ is shown in red. Amino acids in black and underlined represent the positions at which the CPS intein cassette was integrated.

(B) Crystal structure of the TEV C151A mutant (PDB ID: 1Q31)² with the CPS cassette integration insertion positions highlighted. The figure was generated using PyMOL.

Figure S3. Influence of the incubation time and concentration of the small molecule on the protein *trans*-splicing reaction

(A) Time dependent formation of splice product (SP) in the presence or absence of 2 µM rapamycin.

(B) Normalized time dependent analysis of the individually evaluated splice product formation of split TEV 118 and 206 based upon the densitometric analysis of the splice product band.

(C) Analysis of the splice product (SP) formation at different rapamycin concentrations and for two different time points.

(D) Densitometric analysis of the dose-dependent CPS as shown in c).

Figure S4: Amino acid sequence of the TEV construct and reporter protein

Schematic representation and amino acid sequence of GST-TEV (pTS168) and MBP-TEVsite-EGFP (pTS169).

Experimental Procedures

Small molecules

Rapamycin was purchased from LC Laboratories and was stored in a 1 mM or 100 μ M stock solution in DMSO at -20 °C. The rapalog AP23102 was kindly provided by ARIAD Pharmaceuticals and a 1 mM stock solution in ethanol was stored at -20 °C.

Western Blots

For Western Blots from whole cell extracts of yeasts the ECL Kit (GE Healthcare) with a 1:4000 dilution of the secondary antibody was used according to the manufacturer's recommendations. The dilutions of the primary antibodies were as follows: anti-His (Qiagen) 1:2000, anti-GST (Sigma Aldrich) 1:1000, anti-GFP (Covance) 1:4000, anti-HA (Covance) 1:1000, anti-MBP (Fermentas) 1:10000.

All stripped Western Blots were reincubated with the anti-Actin sc-1616 (Santa Cruz Biotechnology) antibody in a 1:500 dilution. The secondary antibody was used in a 1:40000 dilution and subsequently the Western Blot was performed with the ECL Advanced Kit (GE Healthcare) to the manufacturer's recommendations.

General yeast procedures

All *S. cerevisiae* strains were grown at 30°C either in YPD medium or in SD medium lacking the amino acids required for genetic selection of auxotrophic markers.³ For the SD medium, methionine was used at a concentration of 150 μ M to reduce the expression level of the *MET25* promoter.⁴ Transformation of yeast was done following a LiAc protocol.^{5, 6} Plasmids and genomic DNA were isolated by a glass bead assisted DNA/RNA phenol-chloroform extraction protocol.³ For the preparation of whole cell protein extracts, always the same amount of cells were centrifuged (1 ml of an OD₆₀₀ = 1.0) and the proteins were

prepared using trichloroacetic acid (TCA) precipitation and resuspension in HU sample buffer containing 8M urea.⁷

Generation of a rapamycin-resistant yeast strain

We generated the *S. cerevisiae* strain TS302 which is based on the W303 strain with two additional mutations in *tor2-1* and *FPR1* (see Table S1). The *tor2-1* mutation was introduced by transformation of W303 with the PCR-product obtained by using the primers oTS25 and oTS26 and genomic DNA of the SBFB4 strain,⁸ kindly provided by Pete Belshaw, as a template, followed by selection on YPD-medium plates containing 0.1 μ g/ml rapamycin. The *FPR1* gene was deleted by genomic insertion of the *HIS3* marker cassette amplified by PCR from the plasmid pFA6a-HIS3MX6⁹ with the primers oTS140 and oTS141.

Genetic insertion of the CPS intein cassette into target genes

For the integration of the CPS cassette into the target genes by homologous recombination a yeast strain (Δ VMA) lacking the *TFP1* gene (Euroscarf accession number: Y03883) was used (see Table S1). The CPS cassette is encoded on plasmid pTS13 and its gene organization and full DNA sequence is given in Figure S1. To insert the cassette at the C-terminus of MBP, the Δ VMA strain was first transformed with the recipient plasmid encoding the target gene (pTS11; 2 μ origin). The CPS cassette encoding an additional His₆-tag C-extein sequence (Figure S1) was amplified by PCR using oligonucleotides oTS13 and oTS14 and pTS13 as the template. The Δ VMA-pTS11 strain was then transformed with the purified PCR product and transformants were selected by the *HIS3* marker gene in the cassette.¹⁰ Isolated plasmids were confirmed for the correct integration by DNA-sequencing. Of these, one (pTS15) was used for further experiments.

For the cassette integrations into different positions of the GST-TEV encoding gene, the ΔVMA strain was first transformed with the respective plasmid (pTS55, 2µ origin). The CPS cassette was then

amplified by PCR and inserted as described above using a specific pair of PCR primers for each position (Table S4). The candidate integration plasmids from the selected transformants were isolated by phenol/chloroform extraction. To avoid a potential mixture of plasmids, the isolated plasmids were retransformed into the same strain, the selection was repeated, and plasmids were again isolated from colonies grown in this second round. After confirmation of the correct cassette integration by DNA-sequencing, the final TEV-CPS integration plasmids (pTS89, pTS90, pTS95, pTS99, pTS110, pTS111, pTS114, pTS118, and pTS119) were obtained.

Identification and modification of the active TEV-CPS variants

The rapamycin resistant strain (TS302; see Table S1) was co-transformed with either one of the TEV-CPS integration plasmids or a control plasmid (negative = pTS35, positive = pTS55), respectively, and the reporter plasmid encoding MBP-TEVsite-EGFP (pTS69). Selection was performed according to genetic markers of the plasmids. After inoculation from a plate the strains carrying the different TEV-CPS integration plasmids were grown over night in medium containing either 1 μ M rapamycin or 0.1 % (v/v) DMSO. At the following day whole cell extracts were prepared and analysed via Western Blot.

To generate the final TEV118-CPS (pTS165) and TEV206-CPS (pTS170) constructs, the coding region of the active insertion positions 118 (pTS90) and 206 (pTS110) was amplified with the primers oTS186 and oTS187 and subsequently cloned into p424-TDH. In this PCR- amplification step the HA-tag sequence was added to the 3' end of the C-terminal TEV gene fragment. In the same step, the three terminal amino acids of TEV were deleted to block intramolecular cleavage of the HA-tag. The corresponding C1A splice mutants 118 (pTS184) and 206 (pTS187) were generated via site-directed mutagenesis using the primer pairs oTS182 & oTS183 (template pTS165) and oTS184 & oTS185 (template pTS170). The positive control (pTS165, see Figure S4) coding for GST-TEV-HA was amplified from the plasmid pTS55 using again the primers oTS186 and oTS187. The reporter plasmid coding for MBP-TEVsite-EGFP was derived from pTS69 cloned into the ARS/CEN origin plasmid. In the following growth experiments rapamycin resistant strain (TS302) was cotransfected with two

plasmids, one of which was in all cases reporter plasmid (pTS169, see Figure S4) encoding MBP-TEVsite-EGFP. As the negative control the p424-TDH plasmid was used.

In the growth experiments of the TEV118-CPS and TEV206-CPS constructs over-night cultures grown in SD medium were used to inoculate 10 mL of the same medium to an $OD_{600} = 0.3$. These cultures were grown until they reached exponential growth phase ($OD_{600} \sim 0.5$), which took about 3 h. Then each culture was split into 2 flasks and further incubated at the same temperature with either the depicted concentrations of rapamycin or just the same volume of DMSO. At the indicated time points aliquots were removed and whole cell extracts were prepared.

TEV-CPS mediated manipulation of EGFP localization and analysis by fluorescence microscopy

To observe the localization of EGFP in yeast cells the rapamycin resistant strain SBFB4 was cotransformed with a plasmid encoding STE2-TEVsite-EGFP (pTS229) and the plasmids encoding the split TEV118-CPS or TEV206-CPS (pTS165, pTS170). For comparison, the plasmids encoding the respective splice mutants (pTS184, pTS187), the positive (pTS168) and negative (p424-TDH) controls, were cotransformed.

Following inoculation in 10 ml fresh medium to an $OD_{600} = 0.15$ from an over night culture these cultures were split and grown for eight hours either in the presence of 2 µM rapamycin or 0.2 % DMSO (v/v). Afterwards the cells were used for the preparation of whole cell extracts and also for live cell fluorescence microscopy experiments. For the latter procedure, the cells were pelleted by centrifugation, washed once with PBS, and resuspended in 200 µl of PBS containing 2% glucose to an $OD_{600} = 0.5$. Half of this solution was added for cell immobilization to MatTek dishes that were coated with concanavalin A according to the following procedure: The glass surface of the MatTek dishes were briefly incubated with 75 µl of 1M NaOH by pipetting the solution three times up and down. The same was subsequently performed for 75 µl of pure ethanol and was followed by two washing steps with H₂O. Then the dishes were incubated for three hours with 100 µl of 1% concanavalin A (Carl Roth) in PBS solution. After removal of the solution the dishes were washed twice with PBS and the yeast samples were placed onto

them. The dishes were mounted on a Leica TCS SP5 confocal microscope with a HCX PL APO 63x oil objective. For excitation at 488 nm an argon laser was used and EGFP fluorescence was detected from 504 to 530 nm. At least 200 cells per experiment were manually analysed for the localization of EGFP for each strain carrying different plasmids and grouped into i) predominant membrane localization, ii) predominant cytosolic localization, and iii) predominant vacuolar localization.

Table S1. S.	cerevisiae	strains	used i	in	this s	study
						•

name	reference	genotype
ΔVMA	Y03883 (EUROSCARF)	<i>MAT</i> α ; <i>his</i> 3Δ 1; <i>leu</i> 2Δ 0; <i>met</i> 15Δ 0; <i>ura</i> 3Δ 0; <i>tfp</i> 1Δ :: <i>kanMX</i> 4
SBFB4	8	MATa; trp1-901; leu2-3,112; ura3-52; his3-200; gal4Δ; gal80Δ; GAL2-ADE2; LYS2::GAL1- HIS3; met2:: GAL7-lacZ; tor2-1; Δfpr1
TS302	this work; based on the W303 strain ¹¹	MAT α , ura3-1, ade2-1, trp1-1, his3-11, leu2-3, tor2-1, fpr1 Δ ::HIS3MX6
W303	11	<i>MATα, ura3-1, ade2-1, trp1-1, his3-11, leu2-3</i>

Table S2. List of generated plasmids

Plasmid name	Coding region	Vector used for generation	Insert/template DNA	Primer used	Generated via restriction sites / integration / fusion PCR
pTS8	FRB- C'VMA-His ₆	p416- MET25	pEB3 ¹²	-	restriction sites (<i>Hin</i> dIII and <i>Xho</i> I)
pTS11	MBP	pYES2 (Invitrogen)	pHM45 ¹²	-	restriction sites (<i>Hin</i> dIII and <i>Xho</i> I)
pTS13	N'VMA- FKBP_HIS3_pMET25- FRB-C'VMA-His6	pBluescript KS- (GenBank Acc. No.: X52329)	pHM41, ¹² pFA6a- HIS3MX6, ⁹ pTS08	oTS007 & oTS008, oTS005 & oTS006, oTS009 & oTS010; fusion PCR = oTS007& oTS010	fusion PCR ¹³ , restriction sites (<i>Nhe</i> I and <i>Xho</i> I)
pTS15	MBP-N'VMA- FKBP_HIS3_FRB- C'VMA-His6	pTS11 (pYES2)	pTS13 (CPS cassette)	oTS13 & oTS14	integration
pTS34	MBP-TEV(site)-EGFP	pHM45 ¹²	pEGFP-N1 (Clontech)	oTS75 & oTS76	restriction sites (<i>Eco</i> RI and <i>Hin</i> dIII)
pTS35	none (GAL1 promoter)	p426-GPD	pYES2 (GAL1 promoter)	oTS71 & oTS72	restriction sites (SacI and SpeI)
pTS40	MBP-TEVsite-EGFP	p425-TDH	pTS34	oTS77 & oTS76	restriction sites (<i>Pst</i> I and SpeI)
pTS55	His ₆ -GST-TEV(S219V)	pTS35 (p426-GPD)	pGAT_TEVS219V*	-	restriction sites (<i>SpeI</i> and <i>XhoI</i> ; <i>XbaI</i> instead of <i>SpeI</i> in pGAT_TEVS219V*)
pTS68	MBP-TEVsite-EGFP	pTS34	pEGFP-N1 (Clontech)	oTS97 & oTS98	restriction sites (<i>Eco</i> RI and <i>Hin</i> dIII)
pTS69	MBP-TEVsite-EGFP	pTS40 (p425-TDH)	pTS68	-	restriction sites (<i>Nde</i> I and <i>Hin</i> dIII)
pTS89	His ₆ -GST- N'TEVCys151-N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEVCys151	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS91 & oTS92	integration
pTS90	His ₆ -GST-N'TEV118- N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV118	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS95 & oTS96	integration
pTS95	His ₆ -GST-N'TEV130- N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV130	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS93 & oTS94	integration
pTS99	His ₆ -GST-N'TEV97- N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV97	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS128 & oTS129	integration
pTS110	His ₆ -GST-N'TEV206- N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV206	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS124 & oTS125	integration
pTS111	His ₆ -GST-N'TEV16- N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV16	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS130 & oTS131	integration

Plasmid	Coding region	Vector used	Insert/template DNA	Primer	Generated via
name		for generation		used	restriction sites / integration / fusion PCR
pTS114	His ₆ -GST-N'TEV135- N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV135	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS126 & oTS127	integration
pTS118	His ₆ -GST- N'TEV110(Ile)-N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV110	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS121 & oTS122	integration
pTS119	His ₆ -GST- N'TEV110(Ala)-N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV110	pTS55 (p426-GPD)	pTS13 (CPS cassette)	oTS123 & oTS122	integration
pTS142	FRB-C'VMA- C'TEV118-HA	p426-GPD	pTS90	oTS160 & oTS161	restriction sites (<i>Bam</i> HI and <i>Xho</i> I)
pTS144	FRB-C'VMA- C'TEV206-HA	p426-GPD	pTS110	oTS160 & oTS161	restriction sites (<i>Bam</i> HI and <i>Xho</i> I)
pTS165	His ₆ -GST-N'TEV118- N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV118-HA	p424-TDH	pTS90	oTS186 & oTS187	restriction sites (<i>Spe</i> I and <i>Xho</i> I; <i>Nhe</i> I instead of <i>Spe</i> I in PCR of pTS90)
pTS168	His ₆ -GST-TEV-HA	p424-TDH	pGAT_TEVS219V*	oTS186 & oTS187	restriction sites (<i>SpeI</i> and <i>XhoI</i> ; <i>NheI</i> instead of <i>SpeI</i> in PCR of pGAT_TEVS219V)
pTS169	pTDH-MBP-TEVsite- EGFP	p415-MET	pTS69; pTS69	-	restriction sites (p415-MET:SacI and XhoI; pTS69: SacI and NdeI; pTS69: NdeI and XhoI)
pTS170	His ₆ -GST-N'TEV206- N'VMA- FKBP_HIS3_FRB- C'VMA-C'TEV206-HA	p424-TDH	pTS110	oTS186 & oTS187	restriction sites (<i>SpeI</i> and <i>XhoI</i> ; <i>NheI</i> instead of <i>SpeI</i> in PCR of pTS110)
pTS184	His ₆ -GST-N'TEV118- N'VMA(AFAK)- FKBP_HIS3_FRB- C'VMA-C'TEV118-HA	p424-TDH	pTS165	oTS182 & oTS183	-
pTS187	His ₆ -GST-N'TEV206- N'VMA(AFAK)- FKBP_HIS3_FRB- C'VMA-C'TEV206-HA	p424-TDH	pTS170	oTS184 & oTS185	-
pTS201	ssTM-PARPD-TEVsite- EGFP	p415-MET	ssTM-PARPD- GAL4**, ¹⁴ pTS169	oTS197 & oTS204	restriction sites (p415-MET: SpeI and HindIII; PCR ssTM- PARPD-GAL4: SpeI and EcoRI; pTS169: EcoRI and HindIII)
pTS229	STE2-TEVsite-EGFP	pTS201 (p415-MET)	STE2 (chromosomal DNA SBFB4)	oTS221 & oTS222	restriction sites (<i>Spe</i> I and <i>Nde</i> I)

The yeast vectors (p42X and p41X based)^{4, 15} were a kind gift of Roland Lill. *= The TEV protease containing plasmid was a kind gift of Kirill Alexandrov. **= The ssTM-PARPD-GAL4 plasmid was kindly provided by Christian Haass.

Table S3. List of primers

primer name	description / template	sequence (5' to 3')
oTS005	HIS3 marker for CPS cassette FP	GTGGAGCTTCTAAAACTGGAAACTAGTTATTAACGTACGCTGC AGGTCGAC
oTS006	HIS3 marker for CPS cassette RP	CGAACCCTTGCATCCGAGCTCCAGCTTTTGATCGATGAATTCGA GCTCG
oTS007	VMA-FKBP FP	ATATGCTAGCGAATTCCTTAAGGGGTGCTTTGC
oTS008	VMA-FKBP RP	TTAATAACTAGTTTCCAGTTTTAGAAG
oTS009	pMET25-FRB-C'VMA-His ₆ FP	CAAAAGCTGGAGCTCGGATGC
oTS010	pMET25-FRB-C'VMA-His ₆ RP	CATGACTCGAGTTAGTGATGGTGATG
oTS013	integration CPS cassette in pTS11 FP	ACAATAACAACAACCTCGGGATCGAGGGAAGGATTTCAGAATT
	integration CPS cassette in pTS11 RP	CCTTAAGGGGTGCTTTG
oTS014		GAGTTAGTGATGGTGATGGTGATGAGATCTGGATCCGTCCTCCT TCTCGTCGCAATTGTG
oTS071	pGAL1 FP	ATAGAGCTCACGGATTAGAAGCCGCCGAGC
oTS072	pGAL1 RP	ATAACTAGTGTTTTTTCTCCTTGACGTTAAAG
oTS075	TEVsite-EGFP FP	ATAGAATTCGAGAATCTTTATTTTCAGGGCCGGGATCCACCGGT CGCCACC
oTS076	EGFP-HIS ₆ RP	ATAAAGCTTTTAGTGATGGTGATGGTGATGCTGCAGCGATCCCT TGTACAGCTCGTCCATGCC
oTS077	MBP FP	ATAACTAGTAGCATATGAAAATCGAAGAAG
oTS091	integration CPS cassette in TEV151 FP	TATTCTGGAAGCATTGGATTCAAACCAAGGATGGGCAGTGCTT TGCCAAGGGTACCAA
oTS092	integration CPS cassette in TEV151 RP	ATGAACCCATCTCTAGTTGATACTAATGGACTGCCACAATTGTG CACGACAACCTGG
oTS093	integration CPS cassette in TEV130 FP	AAACTAAGAGCATGTCTAGCATGGTGTCAGACACTAGTTGCTTT
oTS094	integration CPS cassette in TEV130 RP	GCCAAGGGTACCAA ATGCTTCCAGAATATGCCATCAGATGAAGGGAATGTGCAATTG TGCACGACAACCTGG
oTS095	integration CPS cassette in TEV118 FP	AGGGAAGAGCGCATATGTCTTGTGACAACCAACTTCCAAACTG TCGGGTGCTTTGCCAAGGGTACCAA
oTS096	integration CPS cassette in TEV118 RP	AATGTGCAACTAGTGTCTGACACCATGCTAGACATGCTCTTTC TCCGCAATTGTGCACGACAACCTGG
oTS097	TEVsite-EGFP FP	ATAGAATTCGCTGATGAGAATCTTTATTTTCAGGGCGGGGCCAC CATGGTGAGCAAGGG
oTS098	EGFP RP	ATAAAGCTTTTACTTGTACAGCTCGTCCA
oTS121		
	integration CPS cassette in TEV110(Ile) FP	AAAGCTGAAATTTAGAGAGCCACAAAGGGAAGAGCGCATATG CTTTGCCAAGGGTACCAA
oTS122	integration CPS cassette in TEV110 RP	TAGACATGCTCTTAGTTTGGAAGTTGGTTGTCACAAGACAATTG TGCACGACAACCTGG
oTS123	integration CPS cassette in TEV110(Ala) FP	CAAAAGCTGAAATTTAGAGAGCCACAAAGGGAAGAGCGCGCA TGCTTTGCCAAGGGTACCAA
oTS124	integration CPS cassette in TEV206 FP	AAATCAGGAGGCGCAGCAGTGGGTTAGTGGTTGGCGATTAGGT TGCTTTGCCAAGGGTACCAA
oTS125	integration CPS cassette in TEV206 RP	TCACCATGAAAACTTTATGGCTCCCCCACAATACTGAGTCGCAA TTGTGCACGACAACCTGG
oTS126	integration CPS cassette in TEV135 FP	GTCTAGCATGGTGTCAGACACTAGTTGCACATTCCCTTCATGCT TTGCCAAGGGTACCAA
oTS127	integration CPS cassette in TEV135 RP	CATCCTTGGTTTGAATCCAATGCTTCCAGAATATGCCATCGCAA
oTS128	integration CPS cassette in TEV97 FP	TTGTGCACGACAACCTGG AATTATTCGCATGCCTAAGGATTTCCCACCATTTCCTCAATGCT
oTS129	integration CPS cassette in TEV97 RP	TTGCCAAGGGTACCAA GACATATGCGCTCTTCCCTTTGTGGCTCTCTAAATTTCAGGCAA
oTS130	integration CPS cassette in TEV16 FP	TTGTGCACGACAACCTGG AAGCTTGTTTAAGGGACCACGTGATTACAACCCGATATCGTGCT
oTS131	integration CPS cassette in TEV16 RP	TTGCCAAGGGTACCAA TTGTGTGCCCATCAGATTCATTCGTCAAATGACAAATGGTGCAA TTGTGCACGACAACCTGG

primer	description / template	sequence (5' to 3')
name		
oTS160	FRB FP	ATAGGATCCACCATGGCTTCTAGAATCCTCTGGC
oTS161	C'TEV-HA RP	ATACTCGAGTTATTAGGCGTAATCTGGGACGTCGTATGGGTATC
		CACCTTGCGAGTACACCAATTCATTC
oTS162	His ₆ -GST-N'TEV118-N'VMA-FKBP FP	ATAGAATTCACCATGAACACCATTCATCACCATC
oTS163	His ₆ -GST-N'TEV118-N'VMA-FKBP RP	ATACTCGAGTTATTAATAACTAGTTTCCAGTTTTAG
oTS182	SDM TEV118 FP	CAAACTGTCGGGGGCCTTTGCCAAGGGTACC
oTS183	SDM TEV118 RP	GGTACCCTTGGCAAAGGCCCCGACAGTTTG
oTS184	SDM TEV206 FP	GTTGGCGATTAGGTGCCTTTGCCAAGGGTAC
oTS185	SDM TEV206 RP	GTACCCTTGGCAAAGGCACCTAATCGCCAAC
oTS186	His ₆ -GST FP	ATAGCTAGCTCCATGAACACCATTCATCACC
oTS187	C'TEV-HA RP	ATACTCGAGTTATTAGGCGTAATCTGGGACGTCGTATGGGTATC
		CACCCACCAATTCATTCATGAGTTGAG
oTS197	ssTM-PARPD FP	ATAACTAGTGCCATGGAGTTACCTGCACC
oTS204	ssTM-PARPD RP	ATAGAATTCATCGCCTTTTCTCTTTCCTTC
oTS221	STE2 FP	ATAACTAGTATGTCTGATGCGGCTCCTTCATTGAG
oTS222	STE2 RP	ATACATATGTAAATTATTATTATCTTCAGTCCAG

FP: forward primer, RP: reverse primer, SDM: site-directed mutagenesis, and iPCR: inverse PCR.

TEV protease insertion position (into GST- TEV, pTS55)	Primers used for amplification of the CPS cassette (pTS13)	Resulting integration plasmid
16	oTS130 & oTS131	pTS111
97	oTS128 & oTS129	pTS99
110 (I)	oTS121 & oTS122	pTS118
110 (A)	oTS123 & oTS122	pTS119
118	oTS095 & oTS096	pTS90
130	oTS093 & oTS094	pTS95
135	oTS126 & oTS127	pTS114
151	oTS091 & oTS092	pTS89
206	oTS124 & oTS125	pTS110

Table S4. Primers and plasmids for the integration of the CPS cassette into *GST-TEV*

Supplemental References

- 1. R. B. Kapust, J. Tozser, J. D. Fox, D. E. Anderson, S. Cherry, T. D. Copeland and D. S. Waugh, *Protein engineering*, 2001, **14**, 993-1000.
- 2. C. M. Nunn, M. Jeeves, M. J. Cliff, G. T. Urquhart, R. R. George, L. H. Chao, Y. Tscuchia and S. Djordjevic, *Journal of molecular biology*, 2005, **350**, 145-155.
- 3. M. D. Rose, F. Winston and P. Hieter, *Methods in Yeast Genetics: A Laboratory Course Manual*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1990.
- 4. D. Mumberg, R. Muller and M. Funk, *Nucleic acids research*, 1994, **22**, 5767-5768.
- 5. D. Gietz, A. St Jean, R. A. Woods and R. H. Schiestl, *Nucleic acids research*, 1992, **20**, 1425.
- 6. R. H. Schiestl and R. D. Gietz, *Current genetics*, 1989, **16**, 339-346.
- 7. P. A. Silver, A. Chiang and I. Sadler, *Genes & development*, 1988, 2, 707-717.
- 8. B. F. Binkowski, R. A. Miller and P. J. Belshaw, *Chemistry & biology*, 2005, **12**, 847-855.
- 9. A. Wach, A. Brachat, C. Alberti-Segui, C. Rebischung and P. Philippsen, *Yeast (Chichester, England)*, 1997, **13**, 1065-1075.
- 10. C. B. Brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li, P. Hieter and J. D. Boeke, *Yeast (Chichester, England)*, 1998, **14**, 115-132.
- 11. H. Y. Fan, K. K. Cheng and H. L. Klein, *Genetics*, 1996, **142**, 749-759.
- 12. H. D. Mootz, E. S. Blum, A. B. Tyszkiewicz and T. W. Muir, *Journal of the American Chemical Society*, 2003, **125**, 10561-10569.
- 13. H. Kuwayama, S. Obara, T. Morio, M. Katoh, H. Urushihara and Y. Tanaka, *Nucleic acids research*, 2002, **30**, E2.
- 14. H. Steiner, B. Pesold and C. Haass, *FEBS letters*, 1999, **463**, 245-249.
- 15. D. Mumberg, R. Muller and M. Funk, *Gene*, 1995, **156**, 119-122.