SUPPLEMENTARY MATERIAL:

The phenanthridine biguanides efficiently differentiate between dGdC, dAdT and rArU sequences by two independent, sensitive spectroscopic methods.

Marijana Radić Stojković, Snežana Miljanić, Katarina Mišković, Ljubica Glavaš-Obrovac, Ivo Piantanida*

Figure S1. Relative ctDNA and poly A – poly U helix length extension (L/L₀) *vs.* ratio $r_{[compound] / [polynucleotide]}$ plot for **EB**, **5** and **6** at pH 7.0, sodium cacodylate buffer, I = 0.05 mol dm⁻³. Results: $\alpha = 0.62 \pm 0.06$ (for **5**), 0.31 ± 0.03 (for **6**) and 1.04 ± 0.09 (**EB**) with ctDNA; $\alpha = 0.77 \pm 0.05$ (for **5**), 0.91 ± 0.06 (for **6**) and 1.02 ± 0.08 (**EB**) with poly A – poly U.

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2011

Figure S2. Relative poly dG - poly dC helix length extension (L/L₀) *vs*. ratio $r_{[compound]}$ / [polynucleotide] plot for **EB** and **5** at pH 7.0, sodium cacodylate buffer, I = 0.05 mol dm⁻³. Result: $\alpha_{5}/\alpha_{EB} = 0.805$.

Figure S3. Relative poly(dAdT)₂ helix length extension (L/L₀) *vs*. ratio $r_{[compound]/[polynucleotide]}$ plot for **EB** and **5** at pH 7.0, sodium cacodylate buffer, I = 0.05 mol dm⁻³. Result: $\alpha_5/\alpha_{EB} = 0.48$.

Figure S4. CD titrations of a) poly $(dAdT)_2$ and b) ctDNA ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with **6** at molar ratios r = [compound] / [polynucleotide] (pH 5.0, citric acid/NaOH buffer, I = 0.03 mol dm⁻³).

Figure S5. CD titrations of a) poly $(dAdT)_2$ and b) ctDNA ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with **5** at molar ratios r = [compound] / [polynucleotide] (pH 5.0, citric acid/NaOH buffer, I = 0.03 mol dm⁻³).

Figure S6. CD titrations of a) poly dA – poly dT and b) poly dG – poly dC ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with **6** at molar ratios r = [compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, *I*=0.05 moldm⁻³).

Figure S7. CD titrations of a) poly $(dAdT)_2$ and b) poly A – poly U ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with **6** at molar ratios $r = [compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, <math>I=0.05 \text{ moldm}^{-3}$).

Figure S8. CD titrations of a) poly dA – poly dT b) poly dG – poly dC ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with **5** at molar ratios r = [compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, *I*=0.05 moldm⁻³).

Figure S9. CD titrations of a) poly $(dAdT)_2$ and b) poly A – poly U ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with **5** at molar ratios $r = [compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, <math>I=0.05 \text{ moldm}^{-3}$).

Figure S10. CD titrations of ctDNA ($c = 3.0 \times 10^{-5} \text{ mol dm}^{-3}$) with a) **5** and b) **6** at molar ratios $r = [\text{compound}] / [\text{polynucleotide}] (\text{pH 7.0, buffer sodium cacodylate, } I=0.05 \text{ moldm}^{-3}).$

Figure S11. CD titration¹ of poly A-poly U ($c = 1.5 \times 10^{-5} \text{ mol dm}^{-3}$) with 9 at molar ratios r = [compound] / [polynucleotide] (pH 5.0, citric acid buffer, $I = 0.03 \text{ mol dm}^{-3}$).

Figure S12: Cytotoxic effects of compound **5** on tumor and normal cell lines growth after 72 h of incubation in final concentration range $(10^{-4} - 10^{-7} \text{ mol/dm}^3)$.Data are presented as mean value \pm SD of three independent experiments done in three plicate. Statistically significant change (p < 0.05) is presented by (*).

Figure S13: Cytotoxic effects of compound **6** on tumor and normal cell lines growth after 72 h of incubation in final concentration range $(10^{-4} - 10^{-7} \text{ mol/dm}^3)$.Data are presented as mean value \pm SD of three independent experiments done in three plicate. Statistically significant change (p < 0.05) is presented by (*).

Table S1. Preliminary assignment of the vibrational bands observed in	n the SERS	spectra of
the 5 and 6 and their complexes with ctDNA, [5 , 6]/[DNA] 1/20		

Wavenumber / cm^{-1}			Assignment		
5	5/DNA 1/20	6	6/DNA 1/20	Assignment	
1623	1624	1621	1620	v ring (v CC/CN), v CN	
1616 sh	1612			ν CN, δ NH ₂	
1582	1583	1591 sh	1592 sh	v ring (v CC/CN)	
1536	1537	1543	1542	v ring (v CC)	
1467	1466	1465 sh	1465 sh	$\delta_{as} CH_3$	
		1449	1448	v ring (v CC)	
1422	1419 sh	1426	1419 sh	ν_s CNC, ν CN ₃ , δ NH ₂	
			1414	v ring (v CC)	
1391	1392	1389	1388	v ring (v CC)	
1365	1366	1361	1362	ν ring (ν CC), δ_s CH ₃	
1345	1346	1328 sh	1328 sh	v ring (v CC)	
1298	1300	1277	1284	δ_{ip} CH, δ NH	
1258	1257			δ _{ip} CH	
1229	1227	1221	1222	δ_{ip} CH, ν_{as} CNC, ν CN ₃	

Supplementary Material (ESI) for Molecular BioSystems This journal is (c) The Royal Society of Chemistry, 2011

1210	1212			δ_{ip} CH, δ NH
		1185		$\delta_{ip} CH$
1154	1157	1154	1154	$\delta_{ip} CH$
		1138	1137	$\delta_{ip} CH$
1076	1081	1079	1080	δ NH ₂ , ν CN ₃
1039	1039			v ring (v CC)
1007	1004			ν CN ₃ , δ NH ₂
		971	966 sh	δring
952	952	952 sh	954	δring
923	924	911	911	δ CNC, v CN, δ NH ₂
893	891			v ring (v CC)
869	870	870	867	ν ring (ν CC), δ_{oop} CH
837				δring
		797	797	δ ring, δ CNC
727	729	722	729	δring
		706 sh	708	δring
		696	696	δring
655	655	679	679	δring
617	618 sh			δring
588	600			δ NH ₂ , δ NH, δ ring
513 sh	516	520	520	δ CNC, δ ring
506	504			δring
462	460 sh	463	459	δ_{as} CNC
448	447	435	435	δring
421	421	395	395	δ CN ₃ , δ NH ₂
341	339	328	326 sh	$\delta_s CNC$
227	224	227	223	v Ag–N
*		•		·

Abbreviations: sh, shoulder; v, stretching; δ , deformation; s, symmetrical; as, antisymmetrical; ip, in plane; oop, out of plane.

¹ M. Radić Stojković, I. Piantanida, Tetrahedron 64 (2008) 7807-7814