1 Supplemented information

2

3 Cloning and functional analysis of the naphthomycin biosynthetic gene

4 cluster in Streptomyces sp. CS

5 Yingying Wu, Qianjin Kang, Yuemao Shen, Wenjin Su, Linquan Bai

6

7 Plasmid construction for *nat* gene inactivation

To construct the large DNA fragments deletion, a 10-kb Kpnl fragment of the 8 9 fosmid 14F11 was ligated to the KpnI-digested pJTU1289. The resultant 10 plasmid pJTU3230 was used for targeted replacement of a 7.2-kb DNA fragment internal to the 10-kb Kpnl fragment of 14F11 with the 1.40-kb 11 aac(3)/V to generate pJTU3231. To inactivate nat1, an 8.2-kb BamHI/EcoRI 12 fragment carrying nat1 was ligated to the Kpnl/BamHI-digested pJTU1289 to 13 give pJTU3241. This plasmid was then used for targeted replacement of a 14 15 1.34-kb DNA fragment internal to *nat1* with the 1.40-kb *aac(3)/V* to generate pJTU3245. For nat2 inactivation, a 9.7-kb Agel/EcoRI DNA fragment of fosmid 16 14F11 was ligated to the Xmal/EcoRI-digested pIJ2925 to construct pJTU3248. 17 The 9.7-kb fragment with *nat2* was then cleaved by EcoRI and Xbal from the 18 pJTU3248 and ligated to the EcoRI/Xbal-digested pJTU1289 to construct 19 pJTU3249. This plasmid was then used for targeted replacement of a 0.98-kb 20 21 DNA fragment internal to *nat2* with the 1.40-kb *aac(3)/V* to generate pJTU3250. 22

1

1	Figure	legends
---	--------	---------

2	Fig. S1 Alignments of AHBA synthases. RifK, AHBA synthase of rifamycin
3	biosynthesis; NapF, AHBA synthase of naphthomycin C biosynthesis from
4	Streptomyces collinus Tü 1892; RubK, AHBA synthase of rubradirin
5	biosynthesis; Asm43, AHBA synthase of ansamitocin biosynthesis; GelK,
6	AHBA synthase of geldanamycin biosynthesis; AsnF, AHBA synthase of
7	ansatrienin biosynthesis.
8	
9	Fig. S2 Deletion of a large fragment in Streptomyces CS. A, schematic
10	representation for the deletion of large fragment. ${f B}$, validation of the large
11	fragment deletion mutant WYY1 by HPLC.
12	
13	Fig. S3 AHBA biosynthetic gene sets from ansamycin biosynthetic gene
14	clusters (A) and phylogenetic tree of AHBA synthases (B)
15	
16	Fig. S4 Alignment of Nat1 and Asm12. Nat1, halogenase for naphthomycin
17	biosynthesis; Asm12, halogenase for ansamitocin biosynthesis.
18	
19	Fig. S5 Alignment (A) and phylogenetic tree (B) of oxidoreductases.
20	RubP1, oxidoreductase for rubradirin biosynthesis; Orf19, oxidoreductase for
21	rifamycin biosynthesis; Nat2, oxidoreductase for naphthomycin biosynthesis
22	from CS; GdmM, oxidoreductase for geldanamycin; McbM, oxidoreductase for

- 1 macbecin biosynthesis.
- 2
- 3 Fig. S6 ESI-MS analysis of ansamitocins and naththomycins
- 4

5 **Table S1.** Strains and plasmids used in this work

Strains or		Reference
Plasmids	Properties of products	or source
Strains		
Streptomyces	wild-type, naphthomycins	1
sp. CS		
WYY1	large fragment deletion mutant,	This study
	F ⁻ <i>mcr</i> A ∆(<i>mrr-hsd</i> RMS- <i>mcr</i> BC) Φ80d	
DH10B	lacZ∆M15∆lacX74deoR recA1endA1ara	Invitrogen
	∆139D(<i>ara,leu</i>)7697 <i>gal</i> UgalKλ⁻rpsL nupG	
ET12567	dom dom hads at 170000	2
(pUZ8002)		
Actinosynnema	Wild type, appomitacing	2
pretiosum	wild-type, ansamilocins	3
	asm12 with MscI site inserted,	4
HGF034	19-DCI-ansamitocins	
BL21(DE3)plysE	$F^- ompT hsdS_B (r_B^- m_B^-) gal dcm (DE3) plysE (Cm^R)$	Invitrogen
WYY2	<i>nat1</i> mutant, Apr ^R	This study
WYY3	<i>nat2</i> mutant, Apr ^R	This study
WYY4	WYY2 complemented with pJTU824, Thio ^R	This study
WYY5	WYY2 complemented with <i>asm12</i> , Thio ^R	This study
WYY6	WYY2 complemented with <i>nat1</i> , Thio ^R	This study
KW3	HGF054 complemented with pJTU139, Apr ^R	This study
KW4	HGF054 complemented with asm12, Apr ^R	This study

KW5	HGF054 complemented with <i>nat1</i> , Apr ^R	This study
KW6	WYY3 complemented with <i>nat2</i> , Thio ^R	This study
KW7	WYY3 complemented with <i>rif-orf19</i> , Thio ^R	This study
KW8	HGF065 complemented with <i>nat2</i> , Apr ^R	This study
Plasmids/		
fosmids		
pBluescript		
KS(+)	bla, lacz, orit1	Novagen
14F11, 4C11,	Fosmids containing naphthomycin biosynthetic	This study
23G9	gene cluster	This study
pJTU1289	ori(pIJ101), tsr, bla, lacZ	5
pJTU3231	<i>bla</i> , <i>aac(3)IV</i> , cloning of a KpnI fragment from	This study
	14F11 to pJTU1289, contains a linked 1.25-kb left	
	arm, 1.4-kb <i>aac(3)IV</i> ,1.25-kb right arm for large	
	fragment inactivation	
pRSETb	Bla. T7	Invitrogen
pIJ2925	bla, lacZa, ori	6
pIB139	pSET152 derived vector with <i>PermE[*]</i> promoter	7
		L Bai,
pJ10824	bla, tsr, rep ^{rie} , att ^{ree} , orl1, PermE [*]	unpublished
	bla, aac(3)IV, cloning of a BamHI/EcoRI fragment	
	from 14F11 to pJTU1289, contains a linked 3.24-kb	This should
pJ103245	Ir left arm, 1.4-kb <i>aac(3)/V</i> , and 3.72-kb right arm for	
	nat1 inactivation	
pJTU3243	pIB139 cloned with asm12 for complementation	This study
pJTU3244	pIB139 cloned with <i>nat1</i> for complementation	This study
pJTU3246	pJTU824 cloned with <i>asm12</i> for complementation	This study
pJTU3247	pJTU824 cloned with <i>nat1</i> for complementation	This study
pJTU3250	bla, aac(3)IV, cloning of a EcoRI/AgeI fragment	This study

		from 14F11 to pJTU1289, contains a linked 3.94-kb	
		left arm, 1.4-kb <i>aac(3)IV</i> , and 3.98-kb right arm for	
		nat2 inactivation	
	pJTU5156	pJTU824 cloned with <i>nat2</i> for complementation	This study
	pJTU5157	pJTU824 cloned with rif-orf19 for complementation	This study
	pJTU5158	pIB139 cloned with <i>nat2</i> for complementation	This study
1			
2			
2			
3			

RifK.seq NapF.seq RubK.seq Asm43.seq GdnA.seq AnsF.seq Consensus	MNARKAPEFPAMPCYDDAERNCLVRALEGGOWRMGGDEVNSFEREFAAHHGAAHALAVTNGTHALEL MNARPAPEFPTWPCYDDEERTGUIRALEGGOWRMGGEEVSSFEGEFACHHGAPHAFAVTNGTHAFEL MSPIPRPTFPDWPCFDDTERRALDRALSGGOWRMGGSEVDSFEREFACYHGAHALAVTNGTHALEL MGSSPDAGIDFPAWPCHDDAERAALLRALDGGOWRVGGSEVDEFEREFACYHGAGHALAVTNGTHALEL MSNDVRLRSELPAWPCYGDEEREALIRALDGGGWWRGGEVDAFEAFAAHGSEHALAVTNGTHALEL MSNDVRLRSELPAWPCYGDEEREALIRALDGGGWWRGGEVDAFEAFAAHGSEHALAVTNGTHALEL MSNDVRLRSELPAWPCYGDEEREALIRALDGGGWWRGGEVDAFEAFAAHGSEHALAVTNGTHALEL MSNDVRLRSELPAWPCYGDEEREALIRALDGGGWWRGGEVDAFEAFAAHGSEHALAVTNGTHALEL MSNDVRLRSELPAWPCYGDEEREALIRALDGGGWWRGGEVDAFEAFAAHGSEHALAVTNGTHALEL pwpqderiralgggwwrggevfeefahghaahtgsehalavtngthael	68 68 70 70 70
RifK.seq NapF.seq RubK.seq Asm43.seq GdnA.seq AnsF.seq Consensus	AHBAF ALQVMGVCPGTEVI VPAFITFI SSSCAAQRLGAVTVPVDVDAATYNLDPEAVAAAVTPRTKVI MPVHMAGL ALQVMGACPGTEVI VPAFITFI SSSCAAQR GAVAVPVDVDPDTYN DVAAAAAAVTPRTRVI MPVHMAGL ALQVLGACPGTEVI VPAFITFI SSSCAAQR GAVAVPVDVDPETYN DATATAEA TPRTRVI MPVHMAGL ALQVLGVCPGTEVI VPAFITFI SSSCAAQR GAVAVPVDVDPDTYCLDVAAAEAAVTPRTRVI MPVHMAGQ ALEVLGVCADSEVI VPAFITFI SSSCAAQR GAVAVPVDVDPDTYCLDPSAVEAAI GPKTRAI MPVHMAGQ ALEVLGVCADSEVI VPAFITFI SSSCAAQR GAVAVPVDVDPDTYCLDPSAVEAAI GPKTRAI MPVHMAGQ al v g evi vpafitfi SSSCAAQR GAVAVPVDVDPDTYCLDPSAVEAAI GPKTRAI MPVHMAGQ al v g evi vpafitfi SSSCAAQR GAVAVPVDVDPDTYCLDPSAVEAAI GPKTRAI MPVHMAGQ	138 138 138 140 140 140
RifK.seq NapF.seq RubK.seq Asm43.seq GdnA.seq AnsF.seq Consensus	MADMDALIAKI SADTGYPLLQDAAHAHGARVQCKRVQELDSI ATFSFQNCKLIMTAGEGGAVVFPDGETEKY MADMDALICKLSADTGYAILQDAAHACGARVQCKRVQELGTVAAFSFQNCKLIMTAGEGGAVLFPENDLY MADMDALIDKLASDAGVRILQDAAHAHGARVRCKRVGELGSI AAFSFQNCKLIMTAGEGGAVLFADQDQY FADMDRLDKLSASTGVPVVQDAAHAHGARVRCKRVGELGSI ATFSFQNCKLIMTAGEGGAVLFADQAQW MCDMDALICKLSADSGVPLI QDAAHAHGARVRCCKVGELGSI ATFSFQNCKLIMTAGEGGAVLFADQAQW MCDMDALICKLSADSGVPLI QDAAHAHGARVRCCKVGELGSI AAFSFQNCKLIMTAGEGGAVLFADAEMY MCDMDALICKLSADSGVPLI QDAAHAHGARVRCCKVGELGSI AAFSFQNCKLIMTAGEGGAVLFADAEMY drd i k gv qdaaha ga w g vgel a fsfqngklimtageggav f	208 206 208 208 208 208
RifK.seq NapF.seq RubK.seq Asm43.seq GdnA.seq AnsF.seq Consensus	ETAFLERISCGRPRDDRRYFHKI AGSNMRLINEFSASVLRAGLARLDEQ AVRDEPVTLLSRLLGAI DGVVP EAAFLRHSCGRPRTDRHYKHQVACTNMRLINEFSAAVLRAGLARLDEQ AVRDEPVTLLSRLLGAVDGVVP EKAFLHHSCGRPRTDRNYHHQVACTNMRMNEFSAAVLRAGLGRLDGQ ELREGRVRLLSQLLAG PGVP EKAFVLHSCGRPKGDRYFHLTSGSNFRMNEFSAAVLRAGLGRLDSQ ATROARVPVLSALLAG DGVVP ERGFVRHSCGRPRTDRQYFHRTSGSNFRLINEFSASVLRAGLGRLDSQ ATROARVPVLSALLAG PGVVP ERGFVRHSCGRPRTDRQYFHRTSGSNFRLINEFSASVLRAGLTRLDCQ TTREGRVPVLSRLLAE PGVVP ERGFVRHSCGRPRTDRQYFHRTSGSNFRLINEFSASVLRAGLTRLDCQ TTREGRVPVLSRLLAE PGVVP ERGFVRHSCGRPRTDRQYFHRTSGSNFRLINEFSASVLRAGLTRLDCQ TTREGRVPVLSRLLAE PGVVP ERGFVRHSCGRPRTDRQYFHRTSGSNFRLINEFSASVLRAGLTRLDCQ TTREGRVPVLSRLLAE PGVVP ERGFVRHSCGRPRTDRQYFHRTSGSNFRLINEFSASVLRAGLTRLDCQ TTREGRVPVLSRLLAE PGVVP	278 276 276 278 278 278 278
RifK.seq NapF.seq RubK.seq Asm43.seq GdnA.seq AnsF.seq Consensus	AHBAR CGGDVRADRNSHYMAMFRIPGLTEERRNALVDRUVEAGLDAFAAFRAIVRTDAFVELGAPDE. SVDAIAR CGGDVRADON HYMAMFRIPGITEADRNTLVDRUVEAGLDAFAAFRASTAPTPSGENRRPRRRPVSSVAE CGGDARADRN HYMAMFRIPGNSEERRNLLVDRUVDAG DAFAGFRAIVRTAAFVETGAPEE. SVDAVAK CTVDPRSDRN SYMAMFRMPGVTEERRNAVVDEUVRGIDAFMERAVVRTGAFVE CSRDDRCDRN HYMAMFRVPGITEERRAKVVDTUIEPGCPR. SSFRAVVRTDAFVEVAAPDL. TVDELAR CSRDDRCDRN HYMAMFRVPGITEERRAKVVDTUIEPGCPR. SSFRAVVRTDAFVEVAAPDL. TVDELAR GRDDRCDRN HYMAMFRVPGITEERRAKVVDTUIEPGCPR. SSFRAVVRTDAFVEVAAPDL. TVDELAR GRDDRCDRN HYMAMFRVPGITEERRAKVVDTUIEPGCPR. SSFRAVVRTDAFVEVAAPDL. TVDELAR	347 346 345 347 346 346
RifK.seq NapF.seq RubK.seq Asm43.seq GdnA.seq AnsF.seq Consensus	RCPNT. DAI SSDCVVLHHRVLLAGEPELHATAEI I ADAVG RCPHSRCHQQRTASGCTTGSSSPTSGTVNSAAEI I ADAVA RCPNA. DAI SQDCVVLHHRTLLASEGALTDTAAI VADQVA RCPVS. EEI TRDCVVLHHRVLLGAEEQVRRLAAVVADVVA RCPHS. EALTRDCLVLHHRVLLGSEEQMHEVAAVVADVLA RCPHS. EALTRDCLVLHHRVLLGSEEQMHEVAAVVADVLA rcp a ad	386 386 384 386 385 385

2 Fig. S1

1

2 Fig. S4

2 Fig. S5

1	4.	P. Spiteller, L. Bai, G. Shang, B. J. Carroll, T. W. Yu and H. G. Floss, J
2		Am Chem Soc, 2003, 125 , 14236-14237.

- 3 5. W. Z. J. He Y L, Bai LQ, Liang J D, Zhou X F, Deng Z X, *J. Microbiol. Biotechnol.*, 2010.
- 5 6. G. R. Janssen and M. J. Bibb, *Gene*, 1993, **124**, 133-134.
- C. J. Wilkinson, Z. A. Hughes-Thomas, C. J. Martin, I. Bohm, T.
 Mironenko, M. Deacon, M. Wheatcroft, G. Wirtz, J. Staunton and P. F.
 Leadlay, *J Mol Microbiol Biotechnol*, 2002, 4, 417-426.