

Figure S1: Transcription rate of Z when two transcription factors X and Y are present. The transcription surfaces and plane projections are shown for both *OR* and *AND* input logics in three different cases: activator-activator, activator-repressor and repressor-repressor. [B] = 0.02 [nM], $\beta^{ZI} = 1$ [nM·s⁻¹] and $\kappa^{ZI} = 0.08$ [nM], for I = B, X, Y, and XY.

Figure S2: Cyclic representation of the Feed Forward Loops (FFL) with input logics *AND* and *OR*. FFL Coherent Type 1 to 4 and Incoherent Type 1 to 4 are shown. Kinetic parameters for activation and repression, as well as the optimization parameters are shown here.

Figure S3: Correlation of averaged Pareto-optimal *SDE* with relative abundance of FFL motifs for *E. coli* and *S. cerevisiae* TRNs (Ma et. al, 2006 (10)).

STEP	FUNCTIONS	FORMULATIONS
1	Anchor points	Obtain the anchor points, g^{i^*} for $i \in \{1, 2,, n\}$, by solving Problem PUi. Define hyperplane, as the one that comprises all the anchor points. This plane is called the <i>utopia</i> hyperplane (or, utopia plane).
2	Objectives mapping/ normalization	Compute the Nadir points and Utopia Points. Define L as $L = [\ell_1 \ell_2 \ell_n]^T = g^N - g^u$, that leads to the normalized design metrics as $\overline{g}_i = \frac{g_i - g_i(x^{i^*})}{\ell_i}$, $i = 1, 2,, n$
3	Utopia plane vector	Define the direction, \overline{N}_k from \overline{g}^{k^*} to \overline{g}^{n^*} for $k \in \{1, 2,, n\}$ as $\overline{N}_k = \overline{g}^{n^*} - \overline{g}^{k^*}$
4	Normalized increments	Compute a normalized increment, δ_k along the direction \overline{N}_k for a prescribed number of solutions, m_k , along the associated \overline{N}_k direction: $\delta_k = \frac{1}{m_k - 1}$ $(1 \le k \le n - 1)$
5	Generate utopia hyperplane points	Evaluate a set of evenly distributed points on the Utopia hyperplane as $\overline{X}_{pj} = \sum_{k=1}^{n} \alpha_{kj} \overline{g}^{k^*}$ where $0 \le \alpha_{kj} \le 1$ and $\sum_{k=1}^{n} \alpha_{kj} = 1$.
6	Pareto points generation	A set of well-distributed Pareto solutions in the normalized objective space. For each value of \overline{X}_{pj} generated in Step 5, the corresponding Pareto solution is obtained by solving the following problem: Problem Pn $\min_{x} \{\overline{g}_n(x)\}\$ Subject to: $f_j(x) \le 0$ $(1 \le j \le r)$
7	Pareto design metrics values	The design metrics values for the Pareto solutions obtained in Step 6 can be obtained using the equation $g_i = \overline{g}_i \ell_i + g_i \left(x^{i^*} \right)$, $i = 1, 2,, n$