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Fig. S1. Feedback loop participation of IL-1-associated species in the interaction graph IG1 underlying the logical model M1 
(primary and secondary events included).The more intensely a species is coloured, the more feedback loops it contributes to. 
Hence, white effectors do not participate in any feedback loop. IL-1 receptor antagonists (IL-1Ra) show the highest participation 
level, being involved in 99% of all FLs. Black arrows (red blunt-ended lines) indicate activations (inhibitions).       
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Fig. S2. Feedback loop participation of IL-6-associated species in the interaction graph IG2 underlying the logical model M2 
(primary and secondary events included). SHP2 shows the highest participation level, being involved in 84% of all FLs. See 
Fig. S1 for further explanations. 
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Fig. S3. Dependency matrix DIL-1 derived from IG1 (primary and secondary events included). Colour coding of matrix 
element Dij characterises the influence of effector i with respect to species j: dark green: activator (only positive paths connecting 
i with j exist); dark red: inhibitor (only negative paths connecting i with j exist); light green/red: i is a weak activator/inhibitor of j, 
meaning that only positive/negative paths connecting i with j exist and at least one of them includes a species that is involved in 
a negative feedback loop; yellow: ambivalent factor (positive and negative paths connecting i with j exist); black: i has no effect 
on j (no path connects i with j ). See also Klamt et al.3, 5 
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Fig. S4. Dependency matrix DIL-1 derived from acyclic IG1. Interactions closing feedback loops (see “Methods” and dashed 
lines in Fig. 1) were ignored. See Fig. S3 for further information on colour scheme. 
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Fig. S5. Dependency matrix DIL-6 derived from IG2 (primary and secondary events included). 
See Fig. S3 for further explanations. 
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Fig. S6. Dependency matrix DIL-6 derived from acyclic IG2. Interactions closing feedback loops 
(see “Methods” and dashed lines in Fig. 2) were ignored. See Fig. S3 for further information on colour 
scheme. 
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Fig. S7. Initial I/O behaviour in response to IL-1 as predicted using the logical model M1. Simulations were performed in 
M1 with focus on primary effects (“τ = 2” interactions omitted). See “Methods” and Fig. 1 for further explanations. Confidence 
levels are not displayed for reasons of clarity. Species colours indicate the predicted initial response upon IL-1 stimulation: green: 
1/active; orange: 0/inactive; yellow: indefinite. Model inputs (ligands and “side effectors”), preassigned 1/on or 0/off by default 
value (see “Methods” and model documentation) are coloured grey or white, respectively.          
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Fig. S8. Initial I/O behaviour in response to IL-6 as predicted using logical model M2. Simulations were performed in M2 
with focus on primary effects (“τ = 2” interactions omitted; cf. Fig. 2). See Fig. S7 for further explanations. 
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The data sets used herein were taken from Alexopoulos et al.2 

 

Tab. S1. Intracellular proteins assayed by phosphoproteomic readouts (using multiplexed xMAP technology 
(Luminex Corp., Austin/TX) performed with reagents from Bio-Rad, Hercules/CA; for further information see 
Alexopoulos et al.2) and their mapping to species integrated in represented models.  

Signal Phophosite(s) Corresponding network species 

Akt S473 akt 

ERK1/2 T202/Y204 and T185/Y187 erk12 

GSK3α/β S21/S9 gsk3 

IκBα S32/S36 ikba 

JNK T183/Y185 jnk 

p38 T180/Y182 nuc_p38*, p38 

p70S6K T421/S424 p70s6k 

STAT3 Y705 stat3_py 

HSP27 S78 hsp27_ps 

IRS1 S636/S639 irs1_ps 

MEK1 S217/S221 mek1 
 

Tab. S2. Applied ligands and small molecule kinase inhibitors linked to corresponding network species. 

Ligand/ 
kinase 
inhibitor 

Drug Supplier Concentration Corresponding/ 
affected network 
species 

IL-1α - R&D Systems, 
Minneapolis/MN 

100 ng/ml il1a 

IL-6 - Sigma-Aldrich,  
St. Louis/MO 

100 ng/ml il6 

GSK3βi inhibitor XI Calbiochem, 
Gibbstown/NJ 

0.5 µM gsk3 

IKKβi BMS-345541 Calbiochem, 
Gibbstown/NJ 

10 µM ikkb 

JNKi SP600125 Calbiochem, 
Gibbstown/NJ 

15  µM jnk 

MEK1/2i PD325901 Pfizer Pharmaceuticals, 
New York/NY 

5 nM mek1 

mTORi Rapamycin Calbiochem, 
Gibbstown/NJ 

100 nM mtorc1 

p38i PHA818637 Pfizer Pharmaceuticals, 
New York/NY 

10 nM nuc_p38*, p38 

PI3Ki ZSTK474 Calbiochem, 
Gibbstown/NJ 

2 µM pi3k 

                                                 
* corresponding network species within M2 (representing IL-1 signalling), stressing nuclear p38 MAPK localisation 
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Fig. S9. A: IL-1α signalling raw data set measured in primary human 
hepatocytes. Rows display the phosphoproteomic profiles of 9 intracellular 
proteins involved in modelled IL-1 signalling pathways (mentioned on the left hand 
side) assayed at t = 0 and 30 min (relative to ligand (IL-1α) addition) and induced 
by applied ligand/inhibitor cues depicted in the columns. Grey face colour marks 
signals completely ranging below technical detection limit. Signal, inhibitor, and 
ligand labelling conforms to model notation (see also Tabs. S1 and S2).  
B: Corresponding discretised data (cf. “Methods”; used parameters: p1 = 1.5; 
p2 = 0.15; p3 = 500; negative states: gsk3, ikba). Data management and 
visualisation was performed with DataRail1, 4. Abbreviations: NO-LIG: no 
ligand/negative control; NO-INHIB: no inhibitor.    
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Fig. S10. A: IL-6 signalling data set measured in primary human hepatocytes. 
B: Corresponding discretised data. See Fig. S9 for further descriptions (negative 
state: gsk3). 
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Fig. S11. Interaction graph-based verification of optimised IL-1 network topology. See Fig. 4 for further explanations. The 
underlying IG1 was modified according to Fig. 8. Negative states: gsk3, ikba. 
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Fig. S12. Verification of the optimised logical network representing initial IL-1 receptor signalling. See Fig. 6 for further 
explanations. Associated logical modifications are visualised in Fig. 8. Negative states: gsk3, ikba; NO-LIG: no ligand/negative 
control; NO-INHIB: no inhibitor. 
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Fig. S13. Interaction graph-based verification of optimised IL-6 network topology. See Fig. 5 for further 
explanations. The underlying IG2 was modified according to Fig. 9. Negative state: gsk3. 

Fig. S14. Verification of the optimised logical network representing initial IL-6 receptor signalling. See Fig. 7 for 
further explanations. Associated logical modifications are visualised in Fig. 9. Negative state: gsk3; NO-LIG: no 
ligand/negative control; NO-INHIB: no inhibitor. 
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Fig. S15. Dependency matrix 
segments displaying perturbation 
effects on IL-1 (A) and IL-6 (B) 
signalling species (secondary events 
omitted). Applied cytokines/inhibitors (cf. 
Tab. S2 and Figs. S9.A/S10.A) are 
depicted in the rows. See Fig. S3 for 
further information on colour scheme. 
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Fig. S16. Dependency matrix segments displaying the effects of 
signalling species on phosphoproteomic readouts in the IL-1 (A) 
and IL-6 (B) network (secondary events omitted). Readouts (cf. Tab. 
S1 and Figs. S9.A/S10.A) are depicted in the columns. See Fig. S3 
for further information on colour scheme. 
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VIII. Model documentations 
 

Notation: 

d: default value of a species’ logical state (on: 1; off: 0); e.g. reference to basal (in)activity 

τ: relevance level 

 

 

 

 

 
“Timescale dummy species” were introduced to decouple “τ = 2” events from preceding (τ = 1) AND 
gates. Related (primarily inhibitory) terms integrating species that function via interposed timescale 
dummies are italicised in corresponding SOP representation:   
A · !B = C (τ = 1) equals A · !tdum_B_C = C (τ = 1), whereas B = tdum_B_C (τ = 2).  
 
c: confidence level  

 

 

 

Complex AND nodes were subjectively estimated with regard to the individual confidence levels of 
reactions involved, respectively. 

Interactions:  

→ A species A functions as a model input 
A → species A functions as a model output 
A = B species A activates/positively regulates species B  
A » B A influences B in some way  
A * B = C A AND/OR B effect C in some way, whereas the precise mechanism is 

still unknown 
A · B = C species A AND B cooperatively activate/positively regulate species C 

(both species A and B are essential to cause activation) 
A + B = C species A OR B redundantly/alternatively activate/positively regulate 

species C (either species A or B is essential to cause activation) 
A · !B = C species C gets activated/positively regulated, if species A AND NOT 

species B (e.g. an inhibitor) function cooperatively  
(A + B) · C = D   
⇒ dum_A_or_B · C = D 

species A OR B redundantly/alternatively cooperate with species C to 
activate/positively regulate species D (context-dependently, the OR 
term (A+B) is expressed employing a so-called dummy species 
ensuring SOP representation: dum_A_or_B · C = D)  

1.. primary event;  
active/available interaction during the initial cellular response 

2.. secondary event;  
interactions closing feedback loops, initiating negative-regulatory events 
that require the prior onset of species to be inhibited, delineating 
influences of catalytically aberrant enzyme isoforms, or seeming of minor 
initial relevance with respect to associated species regulation     

Cell line: Primary human hepatocytes, 
human hepatoma cell lines Other Ligand: 

IL-1/IL-6 1.0 0.8 
Other 0.6 0.4 
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VIII.A   IL-1 signalling 
 

Tab. S3.1. IL-1 signalling species. 

№ Model name Full name d Documentation 

1 1 a20 A20  zinc finger protein and dual-function ubiquitin-
editing enzyme with distinct peptidase and 
ligase domains82a, 185a 

2 2 abin2  ABIN2 1 A20-binding inhibitor of NF-κB 2 

3 3 akt* Akt  also: PKB (protein kinase B); oncogenic AGC 
kinase, serine/threonine-specific; transduces 
survival signals94a 

4 4 ap1  AP-1  activator protein 1; basic leucine-zipper 
protein (bZIP); homo- or heterodimeric 
transcription factor complex 

5 4 atf2 ATF2  activating transcription factor 2; ubiquitously 
expressed member of the ATF/cyclic AMP-
response element (CRE)-binding protein 
family of basic region-leucine zipper (bZIP) 
transcription factors; intrinsic histone 
acetyltransferase (HAT) activity (for review 
see [21a]) 

6 5 ccl2 CCL2  chemokine (C-C-motif) ligand 2, also: MCP-1 
(monocyte chemoattractant protein 1); IL-1 
induces CCL2 expression in human primary 
and MRC5 fibroblasts192a 

7 6 cebpb C/EBPβ  CCAAT/enhancer binding protein β, also: LAP 
(liver activator protein), CRP2, NF-IL6); key 
transcription factor concerning the activation 
of APP gene transcription; member of the 
C/EBP subfamily of the basic region leucine 
zipper (bZIP) protein family; constitutive basal 
expression in hepatocytes and HepG2 
cells141a is up-regulated in response to IL-1 
and IL-63a, 61a, 195a 

8 7 cebpd C/EBPδ  CCAAT/enhancer binding protein δ, also: 
NF-IL6β; key transcription factor concerning 
the activation of APP gene transcription; 
member of the C/EBP subfamily of the basic 
region leucine zipper (bZIP) protein family 

  

                                                
*  Dark grey marking points to species (model outputs) that also act during or effect (are directly regulated in) IL-6  

signalling. 
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9 8 cfos c-Fos  v-Fos Finkel-Biskis-Jinkins osteosarcoma 
virus oncogene homolog; member of the bZIP 
family of transcription factors; early immediate 
(IE) gene product/cellular oncoprotein; leucine 
zipper mediates DNA binding 

10 9 cjun c-Jun  v-Jun avian sarcoma virus 17 oncogene 
homolog; member of the bZIP family of 
transcription factors; highly inducible early 
immediate (IE) gene product/cellular 
oncoprotein; leucine zipper mediates DNA 
binding; IL-1 up-regulates c-Jun- and c-Fos-
mRNA levels/gene transcription in HepG2 
cells within 15 min42a, 124a 

11 1
0 
cjun_gene   immediate early (IE) c-Jun gene expression 

12 1
1 
ck2 CK2 1 casein kinase 2; dual specificity IκB kinase 

13 1
2 
cox2 COX2  cyclooxygenase 2, also: PGHS2 (prosta-

glandin G/H synthase 2); oxidoreductase/ 
peroxidase, mediator of inflammation; anti-
proliferative, pro-apoptotic 

14 1
3 
cyt_p38   active, cytosolic p38 MAPK (for description 

see “nuc_p38“) 

15 1
4 
dum_cebp_cox2   dummy species 

16 1
5 
dum_cebp_il1ra   

17 1
6 
dum_cebp_pro_il1b   

18 1
7 
dum_cebp_saa   

19  dum_ikkab_nemo_akt_or_ 
ck2_p65 

  

20 1
8 
dum_ikkab_or_ 
ikkbb_nemo_ikkb_a 

  

21 1
8 
dum_il1_r1   

22 1
9 
dum_il1_r2   

23 2
0 
dum_irak1_or_2_traf6_ub   

24 2
3 
dum_mek3_or_4_or_6_ 
p38 

  

25 2
4 
dum_mek4_or_7_jnk   

26 2
5 
dum_sap1_or_elk_cfos   

27 2
6 
dum_tak1_tab_or_mekk3_ 
ikkb_a  
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28 2
8 
elk1 Elk-1  ETS-domain protein 1; ternary complex 

transcription factor (TCF); ETS domain 
mediates DNA binding 

29 2
9 
erk12 ERK1/2  extracellular signal-regulated kinase 1/2, also: 

p42/44; cytosolic, serine/threonine specific 
and proline direct (phosphorylate serine or 
threonine residues in the motif P/LXT/SP) 

30 3
0 
gsk3 GSK3  glycogen synthase kinase 3 α/β (species 

refers to both currently known isoforms); 
serine/threonine specific; basally active (for 
review see [110a]); GSK3β was shown to 
support the promoter-specific recruitment of 
NF-κB to the il6- and ccl2-locus (as shown in 
MEFs (murine embryonic fibroblasts) in 
response to TNFα168a) 

31 3
1 
hgf HGF  hepatocyte growth factor, also: SF (scatter 

factor); pro-proliferative and -angiogenic 
growth factor, that furthermore stimulates cell 
motility and supports tissue regeneration (→ 
liver; for review see [22a]) 

32 3
2 
hnf4a HNF4α  hepatocyte nuclear factor 4 α, also: TCF14 

(transcription factor 14); constitutively active, 
nuclear transcription factor (homodimer), 
regulating liver-specific genes 

33 3
3 
hsp27_ps HSP27(pS)  heat shock protein 27; serine-phosphorylated 

oligomeric phosphoprotein 

34 3
4 
ikba IκBα  NF-κB inhibitor α; rapidly degraded and 

resynthetised by NF-κB (for review see [133a]) 

35 3
5 
ikba_degr   proteasomal IκBα degradation 

36 3
6 
ikba_diss   incomplete IκBα phosphorylation and 

subsequent inhibitor dissociation (no 
degradation!) 

37  ikka IKKα 1 IκB kinase α, also: IKK1; catalytic subunit of 
the IKK complex 

38  ikka_a   activated (canonical) IKK complex; attributable 
to catalytic IKKα activity  

39  ikkb IKKβ 1 IκB kinase β, also: IKK2; catalytic subunit of 
the IKK complex; predominant kinase in 
regulating NF-κB activity (10 to 20-fold higher 
level of kinase activity for IκBα than IKKα103a); 
IKKβ preferentially phosphorylates the 
carboxyl terminus of NEMO (IKKγ)143a 

40  ikkb_a   activated (canonical) IKK complex; primarily 
attributable to catalytic IKKβ activity  
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41  ikkaa IKKα:IKKα  noncanonical homodimeric IKKα complex (for 
review see [133a]) 

42  ikkaa_nemo IKKα:IKKα: 
NEMO 

 canonical heterotrimeric NEMO-containing IκB 
kinase (IKK) complexes; IKKα:IKKβ:NEMO 
seems to be the predominant form (for review 
see [133a, 155a]) 43  ikkab_nemo IKKα:IKKβ: 

NEMO 
 

44  ikkbb_nemo IKKβ:IKKβ: 
NEMO 

 

45 3
7 
il1a IL-1α  interleukin 1α; pro-inflammatory cytokine 

(17 kDa, 159 amino acids, pI = 5.0); 
predominant form in mice  

46 3
8 
il1b IL-1β  interleukin 1β; pro-inflammatory cytokine 

(17 kDa, 153 amino acids, pI = 7.0); 
predominant form in humans55a 

47 3
9 
il1b_new   re- (“newly”) synthesised IL-1β 

48 4
0 
il1r1 IL-1RI  transmembrane interleukin 1 receptor, type I, 

also: CD121a; 80 kDa, predominantly 
expressed on T cells and fibroblasts58a, 159a; 
IL-6 up-regulates IL-1RI mRNA levels in 
murine hepatocytes81a 

49 4
1 
il1r2 IL-1RII  transmembrane interleukin 1 receptor, type II, 

also: CD121b; decoy receptor (60 kDa)/ 
functions as a ligand sink (for review see 
[115a]); predominantly expressed on B cells, 
macrophages/monocytes, neutrophils, and 
HepG2 cells58a, 63a, 118a; short (29 amino acids) 
cytoplasmic region, no TIR domain → no 
signal transduction; may serve as a precursor 
for a shed, soluble receptor, acting similarly to 
the soluble type I IL-1R in antagonizing or 
otherwise regulating IL-1 action160a 

50 4
2 
il1ra IL-1Ra  IL-1 receptor antagonist 

51 4
3 
il1rc IL-1 

receptor 
complex 

 heterotrimeric (IL-1:IL-1RI:IL-1RAcP) IL-1R 
signalling complex with cytoplasmic TIR 
domains 

52 4
4 
il6 IL-6  interleukin 6, also: BSF-2, IFNβ-2; pleiotropic 

cytokine 

53 4
5 
il8 IL-8  interleukin 8; chemokine 
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54 4
6 
inos iNOS  inducible nitric oxide synthase, also: 

HEP-NOS (hepatocyte NOS); oxido-
reductase/nitric-oxide synthase; functions anti-
oxidantly 

55 4
7 
irak1 IRAK1  IL-1R-associated kinase 1; serine/threonine 

specific, dimerized; IRAK1:IL-1R association 
detectable within 30 s after IL-1 treatment 
followed by subsequent phosphorylation of 
IRAK133a (MyD88 does not bind the 
hyperphosphorylated/kinase active form of 
IRAK1186a) 

56 4
8 
irak1c IRAK1c  alternative splice variant of IRAK1; 

predominant form of IRAK1 expressed in the 
brain; inducible in monocytes and dendritic 
cells; kinase-dead, dominant-negative protein; 
cannot be phosphorylated by IRAK4 due to a 
lack of IRAK4 phosphorylation sites → no 
hyperphosphorylation/dissociation from the 
receptor complex145a 

57 4
9 
irak1_ub   ubiquitinated IRAK1 

58 5
0 
irak2 IRAK2  IL-1R-associated kinase 2; serine/threonine- 

specific, dimerised 

59 5
1 
irak4 IRAK4  IL-1R-associated kinase 4; serine/threonine- 

specific, dimerised; IRAK1/IRAK2 
kinase92a, 111a 

60 5
2 
irakm  IRAK-M 0 kinase-inactive → inducible negative 

regulator, restricted to monocytes/ 
macrophages188a 

61 5
3 
irs1_ps IRS1(pS)  serine-phosphorylated insulin receptor 

substrat 1 

62 5
4 
jnk JNK  c-Jun N-terminal kinase, also: stress-activated 

protein kinase (SAPK); serine/threonine 
specific; 3 established isoforms: JNK1/SAPKγ, 
JNK2/SAPKα (both ubiquitously expressed); 
JNK3/SAPKβ (largely restricted to brain, heart, 
and testis; for review see [46a]) 

63 5
5 
ksrp KSRP  KH-type splicing regulatory protein, also: 

FUBP2 (far upstream sequence binding 
protein 2); ARE binding protein and decay-
promoting factor 

64 5
6 
lbp LBP  LPS binding protein; hepatic acute-phase 

protein (APP) 
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65 5
7 
mekk3 MEKK3  mitogen-activated protein kinase (MAPK)/ERK 

kinase kinase 3; MAP3K, serine/threonine-
specific 

66 5
8 
mk2 MK2  MAP kinase-activated protein kinase 2, also: 

MAPKAP-K2; serine/threonine-specific 

67 5
9 
mek1 MEK1  mitogen-activated ERK kinase 1, also: MKK1 

(mitogen-activated protein kinase (MAPK) 
kinase 1); MAP2K with dual substrate 
specificity 

68 6
0 
mek3 MEK3  mitogen-activated ERK kinase 3, also: MKK3 

(mitogen-activated protein kinase kinase 3); 
MAP2K with dual substrate specificity 

69 6
1 
mek4 MEK4  mitogen-activated ERK kinase 4, also: MKK4 

(mitogen-activated protein kinase kinase 4), 
SEK1, JNKK1; MAP2K with dual substrate 
specificity 

70 6
2 
mek6 MEK6  mitogen-activated ERK kinase 6, also: MKK6 

(mitogen-activated protein kinase kinase 6); 
MAP2K with dual substrate specificity 

71 6
3 
mek7 MEK7  mitogen-activated ERK kinase 7, also: MKK7 

(mitogen-activated protein kinase kinase 7), 
SEK2, JNKK2; MAP2K with dual substrate 
specificity 

72 6
4 
mkp1 MKP1  MAPK phosphatase 1, also: DUSP1 (dual-

specificity phosphatase 1), CL100 

73 6
5 
msk1 MSK1  nuclear mitogen- and stress-activated protein 

kinase 1, also: p90S6K5 (ribosomal protein S6 
kinase, 90 kDa, polypeptide 5); 
serine/threonine-specific nucleosomal kinase 

74 6
6 
mtorc2 mTORC2 1 mTOR complex 2: mTOR + mLST8 

(mammalian LST8/G-protein β-subunit like 
protein) + PROTOR (protein observed with 
Rictor) + mSIN1 (stress-activated protein 
kinase interacting protein 1) + Rictor 
(rapamycin-insensitive companion of mTOR) + 
DEPTOR (DEP domains and specific inter-
action with mTOR, negative regulator); 
insensitive to FKBP12-rapamycin 

75 6
6 
myd88 MyD88  myeloid differentiation primary response gene 

88; member of the IL-1 receptor family and 
bipartite adaptor (N-terminal death domain 
(DD) and C-terminal Toll/IL-1 receptor (TIR) 
domain), linking the TIR domains of the IL-1RI 
complex with the death domains of IRAK; 
MyD88 forms homodimers through DD:DD 
and Toll:Toll interactions in vivo28a 
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76 6
7 
nalp_infl NALP-

inflamma-
some 

 Casp1 (caspase 1) + Casp5 (caspase 5) + 
PYCARD (PYD and CARD domain containing 
protein, also: ASC (apoptosis-associated 
speck-like protein containing a CARD)) + 
NALP1/3 (NACHT, LRR and PYD domains-
containing protein 1/3); caspase-activating 
complex116a 

77 6
8 
nc_nfkb_pathway   noncanonical NF-κB pathway → p52-RelB 

activation via NIK and IKKα homodimers 

78  nemo NEMO 1 NF-κB essential modulator, also: IKKγ, 
IKKAP1, FIP-3; noncatalytic/regulatory subunit 
of the IKK complex; scaffold protein 

79 7
1 
nfkb NF-κB  nuclear factor κB; pleiotropic, heterodimeric 

transcription factor (refering to p65(RelA):p50 
heterodimers in this context) 

80 7
2 
nik NIK  NF-κB-inducing kinase, also: MAP3K14; 

serine/threonine-specific 

81 7
3 
nuc_p38 p38 MAPK  nuclear p38-mitogen activated protein kinase 

(MAPK), also: p38α, SAPK2 (stress-activated 
protein kinase 2); serine/threonine-specific 

82 7
4 
p105 p105  p50 precursor and IκB with C-terminal ankyrin 

repeats (for review see [129a]) 

83 7
5 
p105_degr   complete and/or limited proteasomal 

degradation of p105 

84 7
6 
p50 p50  also: NF-κB1; Rel protein, subunit of the 

dimeric NF-κB transcription complex; no 
C-terminal transactivation domain (TAD); 
N-terminal Rel homology domain (RHD) 
mediates its dimerisation, nuclear 
translocation, DNA binding and IκB interaction 
(for review see [129a, 133a]) 

85 7
7 
p65 p65  also: RelA; Rel protein, subunit of the dimeric 

NF-κB transcription complex; C-terminal 
transactivation domain (TAD); N-terminal Rel 
homology domain (RHD) mediates dimeri-
zation, nuclear translocation, DNA binding, 
and IκB interaction (for review see 
[129a, 133a] 

86 7
8 
pellino Pellino  Pelle (Drosophila orthologue of IRAK1)-

associated protein; 3 established mammalian 
homologues: Pellino 1, 2, 3; RING-like-
domain-containing protein with intrinsic 
ubiquitin E3 ligase activity (for review see 
[123a]) 
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87  pdk1 PDK1 1 phosphoinositide-dependent kinase 1; 
serine/threonine-specific 

88  pi3k PI3K  phosphatidylinositol 3'-kinase; p85 adaptor 
subunit associates with phospotyrosines via 
SH2 domain, whereas p110 encompasses the 
catalytic activity 

89  pip3 PIP3  phosphatidylinositol(3,4,5)-triphosphate 

90 7
9 
pro_hgf pro-HGF  matrix-associated, inactive HGF precursor 

91 8
0 
pro_il1b pro-IL-1β  also: p35; inactive cytoplasmic IL-1β precursor 

92  pten PTEN 0 phosphatase and tensin homolog, also: 
MMAC1 (mutated in multiple advanced 
cancers 1); lipid tyrosine-phosphatase and 
tumor suppressor 

93 8
1 
ros ROS  reactive oxygen species 

94 8
2 
saa SAA  serum amyloid A; hepatic acute-phase protein 

(APP) 

95 8
3 
sap1 SAP-1  SRF (serum response factor) accessory 

protein 1, also: Elk-4 (ETS-domain protein 4); 
ternary complex transcription factor (TCF); 
ETS domain mediates DNA binding 

96 8
4 
sil1r12 sIL-1RI/II 0 soluble IL-1RI/II (IL-1R, type I/II); shedded 

soluble IL-1RII binds IL-1α/β and IL-1RAcP, 
preventing formation of an active IL-1R 
signalling complex 

97 8
5 
sil1r_ap sIL-1RAcP 0 soluble IL-1R accessory protein; truncated 

intracellular domain/alternative splicing 
product → antagonistic co-receptor; 
IL-1RAcP/ sIL-1RAcP ratio of 2:1 in untreated 
human HepG2 cells changes upon treatment 
with inflammatory mediators87a 

98 8
6 
smyd88 sMyD88 0 short MyD88 protein (no intermediary domain 

(ID), amino acids 110 - 157); binds IL-1R and 
IRAK1 without inducing IRAK1 
phosphorylation, acting as a dominant-
negative inhibitor of IL-1- and LPS-, but not 
TNF-induced NF-κB activation85a 

99 8
7 
socs1 SOCS1 0 suppressor of cytokine signalling 1/3, also: 

CIS1/3 (cytokine-inducible SH2 protein 1/3), 
SSI-1/3 (STAT-induced STAT inhibitor 1/3) 

100 8
8 
socs3 SOCS3 0 
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101 8
9 
src Src 1 yet unknown Src kinase 

102 9
0 
tak1_tab TAK1:TAB  preassociated TAK1:TAB1:TAB2/3 complex 

[TAK1: TGFβ-activated kinase 1, also: 
MAP3K7, MEKK7; MAP3K, serine/threonine-
specific; TAB1: TGFβ-activated kinase (TAK)-
binding protein 1; inactive pseudophosphatase 
and specific activator of TAK1, interacting with 
its N-terminal kinase domain; TAB1 becomes 
phosphorylated on the membrane upon IL-1 
treatment (therefore IRAK1 acts as an adaptor 
and not as a kinase89a, 144a); TAB2/3: TGFβ-
activated kinase (TAK)-binding protein 2/3; 
both were shown to act redundantly in IL-1- 
and TNFα-treated HEK293 cells80a; IL-1 
stimulation mediates their release from the 
membrane and cytosolic translocation, where 
they facilitate TRAF6:TAK1 interactions171a] 

103 9
1 
tdum_a20_traf6_ub   timescale dummy species  

104 9
2 
tdum_cyt_p38_tak1_tab   

105  tdum_hsp27_ps_traf6_ub   

106  tdum_il1r2_il1rc   

107  tdum_il1ra_il1r12   

108 9
3 
tdum_irak1c_irak12   

109  tdum_mkp1_p38_jnk_ 
erk12 

  

110  tdum_tpl2_degr_tpl2   

111 9
4 
tollip Tollip  Toll-interacting protein 

112 9
5 
tpl2 TPL2  proto-oncogene serine/threonine protein 

kinase encoded by the tumor progression 
locus 2 (tpl2), also: cancer osaka thyroid 
(COT), MAP3K8; MEK kinase; two established 
isoforms: M1-TPL2, M30-TPL28a 

113 9
6 
tpl2_degr   TPL2 proteolysis/degradation 

114 9
7 
traf6 TRAF6  TNF receptor-associated factor 6; K63-specific 

RING finger E3 ubiquitin ligase34a, 53a; TRAF6 
seems to act as a pure scaffolder/adaptor 
related to the MEKK3-dependent/TAK1-
independent ("Zinc") NF-κB activation 
pathway196a, 200a 
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115 9
8 
traf6_ub TRAF6ub  ubiquitinated TNF receptor-associated factor 

6; K63-specific RING finger E3 ubiquitin 
ligase34a, 53a 

116 9
9 
trika1 TRIKA1 1 TRAF6-regulated IKK activator 1; dimeric E2 

enzyme, subunits: Ubc13 (Ub-conjugating E2 
enzyme), Uev1A (Ub-conjugating E2 enzyme 
variant (UEV), no catalytic cysteine residue)53a 

117 1
0
0 

ttp TTP  tristetraprolin, also: zinc finger protein 36 
(ZFP36), C3H type, homolog (mouse); ARE 
(adenosine/uridine-rich elements)-binding and 
mRNA-destabilising tandem zinc finger 
protein; represses translation when 
dephosphorylated 

118 1
0
1 

upa uPA  urokinase-type plasminogen activator; 
secreted serine protease; catalyses the 
proteolytic cleavage of plasminogen to 
plasmin, promoting extracellular matrix 
remodelling during the early stages of liver 
regeneration (→ liver acute-phase response) 
and functions as an essential pro-HGF 
convertase127a 
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Tab. S3.2. IL-1 signalling   interactions. 

№ Interaction τ c Documentation 

Ligand binding/assembly of the IL-1 receptor complex 

1 → il1a 1 1.0 model inputs 

2 → il1b 1 1.0 

3 sil1r12 = il1a 1 0.8 soluble IL-1RI binds IL-1Ra with a greater 
affinity than IL-1α or -β, predominantly 
withdrawing the receptor antagonist (as 
shown for synovial fluid samples9a); 
relevance for hepatic IL-1 signalling has to 
be checked! soluble IL-1RII more avidly 
binds IL-1β than IL-1α or IL-1Ra, 
neutralising the receptor agonist (as shown 
for synovial fluid samples9a);  

4 sil1r12 = il1b 1 0.8 

5 sil1r12 = il1ra 1 0.8 

6 sil1r_ap » sil1r12 1 0.8 soluble IL-1RAcP interacts with sIL-1RII, 
increasing its binding affinity for IL-1α 
and -β without changing its low IL-1Ra 
binding affinity, therefore supporting the 
neutralization of IL-1α/β activities but also 
reducing the amount of antagonizing 
soluble IL-1RII → no influence on IL-1Ra 
as a second antagonist (as shown for IL-1-
treated A375 and COS-7 cells165a); 
sIL-1RI:sIL-1RAcP association would 
decrease the serum concentration of 
IL-1Ra by trapping the receptor antagonist, 
but: interaction not verified yet! 

7 il1ra = tdum_il1ra_il1r12 2 0.8 timescale dummy activation 

8a il1a = dum_il1_r1 1 0.8 dummy activation 

8b il1b = dum_il1_r1 1 0.8 

8 !il1ra · dum_il1_r1 = il1r1 1 0.8 IL-1α and -β identically bind IL-1R, type I 
with similiar affinities57a, 95a, 104a; IL-1Ra 
competes with IL-1α/β for receptor binding, 
eliciting no biological response (as shown 
for 70Z/3 cells (murine pre-B cell line)71a) 
→ occupancy of the receptor by IL-1Ra 
prevents recruitment of the IL-1RAcP co-
receptor and heterodimer formation (for 
review see [56a]) 

9a il1a = dum_il1_r2 1 0.8 dummy activation 

9b il1b = dum_il1_r2 1 0.8 
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9 !il1ra · dum_il1_r2 = il1r2 1 0.8 IL-1α and -β bind IL-1R, type II57a (as 
shown for CB23 cells (B lymphoblastoid 
line)118a); IL-1Ra competes with IL-1α/β for 
receptor binding, eliciting no biological 
response118a (as shown for 70Z/3 cells 
(murine pre-B cell line)71a) → occupancy of 
the receptor by IL-1Ra prevents 
recruitment of the IL-1RAcP co-receptor 
and heterodimer formation (for review see 
[56a]); HepG2 cells were shown to 
predominantly express IL-1RII63a 

10a il1r2 = tdum_il1r2_il1rc 2 0.8 timescale dummy activation 

10 il1r1 · !il1r2 · !sil1r12 · !sil1r_ap  

= il1rc 

1 0.8 IL-1 binding to IL-1R leads to interaction of 
transmembrane IL-1R and IL-1RAcP (→ 
transmembrane IL-1R accessory protein; 
IL-1 co-receptor64a) due to conformational 
changes possibly increasing their mutual 
affinity (IL-1RAcP itself does not bind       
IL-1)64a, 87a, 187a; transmembrane IL-1RII and 
soluble IL-1RI/II recruit IL-1RAcP into an 
ineffectual trimeric complex upon IL-1 
binding, sequestrating it from signal 
transducing IL-1RI co-receptor 
competition106a (for review see [56a]); but: 
relevance for hepatic IL-1 signalling has to 
be checked!; soluble IL-1RAcP 
antagonisticly associates with IL-1RI and 
inhibits IL-1 signal transduction in HepG2 
cells by rendering the IL-1RI:IL-1β complex 
non-functional (IL-1RAcP/sIL-1RAcP ratio 
of 2:1 in untreated human HepG2 cells 
changes upon treatment with inflammatory 
mediators)87a 

11 il1rc = myd88 1 0.8 the sequence-homologous C-terminal 
region of MyD88 (TIR (Toll-IL-1R) 
homology domain) transiently binds to the 
cytoplasmic IL-1RAcP-TIR domain 
(homophilic interaction, no direct 
IL-1RI:MyD88 association upon IL-1 
stimulation; as shown by co-transfection 
studies in HEK293T cells125a); 
MyD88:IL-1R complex association 
(independent of IRAK:receptor interaction) 
detectable within 30 s (up to 10 min) upon 
IL-1 treatment (as shown for HEK293186a 
and EL-4.6.10 cells29a) 
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12 il1rc = tollip 1 0.8 the activated IL-1R complex rapidly recruits 
pre-existing Tollip:IRAK complexes 
(detectable within 2 min after IL-1β 
stimulation, subsequent IRAK:Tollip 
dissociation within 2 – 5 min; as shown for 
EL-4.6.10 (murine lymphoma) cells29a) 

IRAK and TRAF6 recruitment 

13 myd88 · !smyd88 = irak4 1 0.6 MyD88 interacts with IRAK4 ID 
(intermediary domain)- and DD (death 
domain)-dependently30a, 111a, thus both 
proteins remain associated with the 
receptor complex for at least 1 h (as shown 
for IL-1-stimulated EL4 6.1 murine 
thymoma cells25a); IRAK4 might become 
hyperphosphorylated on serines and 
threonines/catalytically active due to 
autophosphorylation (as shown for IL-1-
treated EL4 6.1 cells25a) upon MyD88 
interaction and stays MyD88-associated30a; 
sMyD88:IRAK4 interaction (impaired 
IRAK4 recruitment to the IL-1RI due to the 
loss of the intermediary domain (ID)) may 
prevent the initial IRAK1 phosphorylation/ 
activation85a, but: relevance for hepatic IL-1 
signalling has to be checked! 

14 myd88 · tollip = irak1c 1 0.8 negative regulatory IRAK1c associates 
with IL-1RI, MyD88, and Tollip, suggesting 
its recruitment to the activated receptor 
complex (as shown for IL-1-treated G292 
(human osteosarcoma) cells145a) 

15 irak1c = tdum_irak1c_irak12 2 0.8 timescale dummy activation 

16 irak4 · myd88 · tollip · !irak1c · !irakm 
= irak1 

1 0.8 IL-1 was shown to induce IRAK1 activation 
in murine hepatocytes81a; Tollip 
preassociates with dimerised IRAK1 in the 
cytosol, blocking its (spontaneous) 
activation and recruiting it to the IL-1R 
complex MyD88-independently145a (as 
shown by co-expression studies in 
HEK293T cells29a); IRAK1 
hyperphosphorylation (especially (p)T66) 
may abolish the IRAK1:Tollip interaction 
leading to IRAK1 release (as supposed by 
co-transfection studies and for IL-1-treated 
COS-1 cells150a); MyD88 merely binds 
kinase-inactive IRAK1, also releasing it 
upon hyperphosphorylation (as shown for 
IL-1-treated HEK293 cells186a); IRAK4 
transiently links to IRAK1 and TRAF6 
within 2 min (up to 30 min) upon IL-1 
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 treatment (as shown for HEK293 cells111a); 
close proximity of IRAK4 and IRAK1 (due 
to their MyD88 (homo-dimerised28a) 
association) causes IRAK4-triggered 
phosphorylation of critical residue(s) within 
the kinase activation loop of IRAK1 (as 
shown in vitro30a, 111a); sequential IRAK1 
(dimerised) phosphorylation leads to its 
activation and release (as shown in vitro 
and supposed for IL-1-treated HEK293 
cells100a): initial IRAK1-T209 
phosphorylation by IRAK4 causes a 
conformational change of the IRAK1- 
kinase domain (KD) and weak kinase 
activity permitting T387 phosphorylation 
within the activation loop → resulting full 
kinase activity catalyses 
hyperphosphorylation of the Pro-ST 
region/UD domain, which impairs the death 
domain interactions, finally leading to 
IRAK1 dissociation from the IL-1R complex 
and possibly promoting the IRAK1 K63-
linked polyubiquitination (K134, K180; as 
shown for IL-1-treated MEFs44a) as a 
prerequisite for TAK1 recruitment196a; the 
nature of IRAK1 modification in response 
to IL-1 strictly regulates the two co-existing 
(TAK1-dependent ”RING” pathway vs. 
MEKK3-dependent ”Zinc” pathway) 
signalling pathways leading to NF-κB 
activation196a, 200a; IRAK-M inhibits the 
dissociation of IRAK1 and IRAK4 from 
MyD88 and formation of activated 
IRAK:TRAF6 complexes (as shown for 
IL-1-treated HEK293T cells99a); kinase-
dead IRAK1c dimerizes with IRAK1, 
impairing its autophosphorylation and/or 
receptor release upon ligand treatment → 
shutdown of signalling through selective 
depletion of functional IRAK1 (as shown for 
IL-1-treated G292 cells145a; alternatively: 
non-effective IRAK1c homodimers may 
compete with catalytically active IRAK1 
dimers for receptor interaction) 

17 irak4 · myd88 · tollip · !irak1c  

= irak2 

1 0.4 assuming that IRAK1 and -2 function 
redundantly, Tollip was shown to 
preassociate with dimerized IRAK in the 
cytosol, blocking its (spontaneous) 
activation and recruiting it to the IL-1R 
complex MyD88-independently (IRAK1 
hyperphosphorylation (esspecially (p)T66) 
may abolish the IRAK1:Tollip interaction, 
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causing IRAK1 release29a, 145a, 150a); MyD88 
links IRAK2 via N-terminal DDs (death 
domains; as shown by co-expression 
studies in HEK293T cells125a); later but 
sustained (up to 8 h → IRAK1: 1 h) 
IRAK4:IRAK2 interaction upon TLR 
stimulation supposes that IRAK2 seems 
essential for late-phase TLR response; 
IRAK4 phosphorylates IRAK2, thereby 
inducing its autophosphorylation activity 
(as shown for MALP-2-treated murine 
peritoneal macrophages92a); kinase-dead 
IRAK1c dimerizes with IRAK2, impairing its 
autophosphorylation and/or receptor 
release upon ligand treatment → shutdown 
of signalling through selective depletion of 
functional IRAK2 (as shown by 
overexpression studies in HEK293 
cells145a; alternatively: noneffective IRAK1c 
homodimers may compete with 
catalytically active IRAK2 dimers for 
receptor interaction); but: the general 
relevance of IRAK2 for hepatic IL-1 
signalling has to be checked! 

18a a20 = tdum_a20_traf6_ub 2 0.8 timescale dummy activation 

18b hsp27_ps 

= tdum_hsp27_ps_traf6_ub 

2 0.8 

18c irak1 = dum_irak1_or_2_traf6_ub 1 0.8 dummy activation 

18d irak2 = dum_irak1_or_2_traf6_ub 1 0.4 

18 dum_irak1_or_2_traf6_ub · trika1· 
!hsp27_ps · !socs3* · !a20 = traf6_ub 

1 0.8 IL-1R complex-associated IRAK1 (or 
IRAK2, as shown by co-expression studies 
in HEK293T cells125a) interacts with TRAF6 
in response to IL-1 (as shown for HEK293 
cells34a, 89a), ensuring the TRAF6:IL-1R 
complex interaction; IRAK4 transiently 
associates with IRAK1 and TRAF689a 
within 2 min (up to 30 min) after IL-1 
treatment (as shown for HEK293 cells111a); 
subsequent IRAK1 hyperphosphorylation 
may cause the dissociation of the 
IRAK1:TRAF6- from the IL-1R complex145a 
followed by TRAF6 oligomerisation13a, 
which might stabilise or enhance the 
affinity of N-terminal TRAF domains 
towards effectors90a; TRIKA1 
(Ubc13:Uev1A) seems to mediate the 
synthesis of nondegradative K63-linked 

                                                
*  Species affecting IL-1 signalling while being regulated by IL-6 (→ crosstalk effects) are highlighted in grey. 
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 polyUb chains53a on TRAF6 (as shown for 
IL-1-treated HeLa cells183a) as a basis for 
the ”RING” pathway196a; IL-1-induced, K63-
linked TRAF6 autoubiquitination (K124) 
was shown as well105a, but: 
autoubiquitination and the TRAF6 RING 
finger domain appear dispensable for 
recruitment of the TAB1:TAB2:TAK1 
complex (as shown for IL-1-treated 
MEFs182a); HSP27 associates with TRAF6 
in response to IL-1, likely 
supporting/enhancing its polyubiquitination 
and facilitating TAK1-, p38-, JNK-, and IKK 
activation (as shown for HEK293194a and 
HeLa cells5a; HSP27 phosphorylation at 
S78 and S82 by activated MK2 promotes 
TRAF6:HSP27 dissociation, which in turn 
depresses IKK activation → negative 
feedback loop (as shown for IL-1-treated 
HeLa cells194a); A20 inhibits IL-1-induced 
NF-κB activation quite likely through 
interaction with TRAF673a, 179a, removing 
K63-linked polyUb chains via its N-terminal 
OUT (ovarian tumour) domain followed by 
a K48-linked substrate (possibly TRAF6 or 
IRAK1) polyubiquitination through its 
ubiquitin ligase domain within the ZnF 
region, leading to proteasomal degradation 
(as shown within the context of TNFR1/RIP 
signalling185a 

⇒  link to IL-6: SOCS3 inhibits TRAF6 
ubiquitination, preventing TRAF6:TAK1 
interaction and TAK1 activation (as shown 
for IL-1-treated INS-1 cells (insulinoma 
β-cells)60a) 

19 irak1 * irak4 = pellino 1 0.4 IRAK1 and/or IRAK4 catalyse the 
phosphorylation of Pellino isoforms in vitro, 
activating/enhancing their E3 ligase 
function (as shown by co-transfection 
studies in HEK293 cells135a, for review see 
[123a]); but: relevance for hepatic IL-1 
signalling has to be checked! 

20 pellino · trika1 = irak1_ub 1 0.8 activated Pellino isoforms mediate the IL-1-
induced, TRIKA1-supported formation of 
K63-pUb IRAK1 (detectable within 5 -10 
min upon IL-1 stimulation of HEK293 
cells135a, for review see [123a]) 
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21 irak1 = traf6 1 0.8 IRAK1 also interacts with TRAF6 
independently of hyperphosphorylation 
within its Pro-ST/UD domain or IRAK1-
K134 polyubiquitination, but therefore fails 
to complex TAK1 → MEKK3-dependent/ 
TAK1-independent (”Zinc”) NF-κB 
activation pathway196a (as shown for IL-1-
treated HEK293 cells200a) 

MAPK signalling 

22a cyt_p38 = tdum_cyt_p38_tab_tak1 2 0.8 timescale dummy activation 

22 traf6_ub · trika1 · mekk3 · !cyt_p38  

= tak1_tab 

1 0.6 TAB1, TAB2/3 (as regulatory subunits), 
and TAK1 (as the catalytic subunit, consti-
tutively TAB1-associated152a) preassociate 
on the membrane before stimulation and 
remain assembled in response to IL-1, 
whereas the major pool of TAK1:TAB1 
complexes resides in the cytosol (as 
shown for IL-1-treated HEK29389a and 
human epithelial KB cells39a); 
IRAK1:TRAF6 leaves the IL-1R complex 
(complex I) in response to IL-1 and 
interacts with preassociated TAK1:TAB1: 
TAB2/3 (= TRIKA2183a) on the membrane 
(complex II), leading to phosphorylation of 
TAB2/3 (dependent on IRAK1 as an 
adaptor but independent of its kinase 
activity; as shown in IL-1-treated HEK293 
cells89a, 144a) and TAK1 (prerequisite for 
TAK1 activation!); [IL-1 transiently induces 
the formation of TAB2:IRAK1:TRAF6 
complexes within 2 – 5 min after 
stimulation (persisting for 20 min); 
therefore IRAK1 acts as a scaffolding 
protein, regulating the redistribution of 
TAB2 (or TAB3; both were shown to act 
redundantly in IL-1- and TNFα-treated 
HEK293 cells80a or within co-expression 
studies in HEK293 cells20a) and enabling 
the association of TRAF6 and TAB2 (no 
direct IRAK1:TAB2 interaction; as shown 
for IL-1-treated HEK293 cells172a); TAB2/3 
possibly bind to IL-1-induced K63-linked 
polyUb chains of TRAF6 (as shown for 
HeLa cells183a) through a highly conserved, 
C-terminal zinc finger (ZnF) domain, 
leading to their own polyubiquitination by 
TRAF690a (as shown in IL-1-treated 
HEK293 cells80a)]; finally 
TRAF6:TAK1:TAB1:TAB2/3 dissociates 
from IRAK1 and translocates to the cytosol 
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 (complex III), where TAK1 becomes 
catalytically active (as shown for IL-1-
treated HEK293 cells89a); IL-1-induced 
IRAK1 degradation (→ 
hyperphosphorylation and K48-linked 
polyubiquitination of IRAK1 in response to 
IL-1 may target it to proteasomal 
degradation200a (as shown for IL-1-treated 
MRC-5 cells197a)) might be necessary for 
the release of the 
TAK1:TRAF6:TAB1:TAB2/3 complex from 
membrane-associated, modified IRAK1, 
causing cytosolic TAK1 activity200a; TAB1 
promotes the TAK1 activation/ 
autophosphorylation at T178, T184, T187, 
and S192 within the kinase activation loop 
upon IL-1 teatment201a; IL-1 furthermore 
induces the TRAF6/TRIKA1-mediated K63-
linked poly-ubiquitination of TAK1 at K209 
(essential for TRAF6:TAK1 interaction and 
complex formation with MEKK3 within 
5 min (up to 30 min) after IL-1 stimulation 
of MEFs196a); MEKK3 seems to act as an 
upstream activator of TAK1, therefore 
phosphorylating it within the activation loop 
(see above) upon conformational changes 
caused by TAK1 K209-polyubiquitination 
(as shown for IL-1-treated MEFs and 
HEK293T cells196a); but: undetectable 
interaction between endogenous TAK1 and 
MEKK3 upon IL-1 treatment suggests two 
distinct complexes (IRAK1:TRAF6:TAK1 
vs. IRAK1:TRAF6:MEKK3)200a; p38α was 
shown to interact with and phosphorylate 
TAB1 at S423, T431, and S438 within 
20 min after IL-1 treatment, down-
regulating or suppressing TAK1 activity as 
a feedback control (as shown for human 
epithelial KB cells38a) and might 
furthermore phosphorylate TAB2 at S582 
and TAB3 at S60/T404 (depending on 
previous p38α recruitment by TAB1), also 
supporting the down-regulation of TAK1 
(as shown for IL-1-treated MEFs39a, 119a) 

23 tak1 = mek3 1 0.4 activated TAK1 functions as a direct 
activator of MEK3121a, but: relevance for 
hepatic IL-1 signalling has to be checked! 

24 tak1 = mek4 1 0.4 TAK1 induces MEK4 phosphorylation/ 
activation (as shown by overexpression 
studies in COS-7 cells158a) 
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25 tak1 = mek6 1 0.4 ubiquitinated and activated TAK1 
phosphorylates MEK6 at S207 and T211 
within the activation loop in vitro121a, 183a; 
but: relevance for hepatic IL-1 signalling 
has to be checked! 

26 tak1 = mek7 1 0.6 IL-1-induced MEK7 activity (as shown for 
IL-1-treated MEFs178a) might result from 
TAK1-mediatd MEK7 phosphorylation (as 
shown by overexpression studies in 
HEK293 cells126a) 

27 traf6_ub = mekk3 1 0.8 TRAF6 associates with MEKK3 (within a 
complex with polyubiquitinated TAK1), 
binding it via its ZnF- and TRAF-C-domain 
and facilitating its oligomerization (as 
shown for IL-1-treated MEFs196a); MEKK3 
activation (S526 trans-/ 
autophosphorylation owing to 
dimerisation37a; dimerisation motif within its 
catalytic domain; as shown for LPS-treated 
MEFs202a) involves the TRAF6-RING- and 
ZnF-domains (as shown by overexpression 
studies in HEK293T cells196a) → MEKK3- 
and TAK1-dependent (”RING”) NF-κB 
activation pathway (as shown for IL-1-
treated MEFs196a); but: relevance for 
hepatic IL-1 signalling has to be checked! 

28 traf6 = mekk3 1 0.8 the IRAK1:TRAF6 complex recruits MEKK3 
independently of hyperphosphorylation 
within the IRAK1-Pro-ST/UD domain or 
IRAK1 K134-polyubiquitination as well (as 
shown for IL-1-treated HEK293 cells and 
MEFs200a), probably via the TRAF6-ZnF 
domain → MEKK3-dependent/TAK1-
independent (”Zinc”) NF-κB activation path-
way (as shown for IL-1-treated MEFs196a); 
but: relevance for hepatic IL-1 signalling 
has to be checked! 

29 mekk3 = mek3 1 0.4 MEKK3 directly phosphorylates and/or 
promotes the MEK3 autophosphorylation 
at S189 and T193, leading to MEK3 activity 
(as shown by overexpression studies in 
COS-7 cells47a) 

30 mekk3 = mek4 1 0.4 MEKK3 directly phosphorylates and/or 
promotes the MEK4 autophosphorylation 
at S221 and T225, leading to MEK4 activity 
(as shown by overexpression studies in 
COS-7 cells47a); MEK7-, but no detectable 
MEK4-activation in MEFs upon IL-1 
stimulation178a! 
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31 mekk3 = mek6 1 0.4 MEKK3 directly phosphorylates/activates 
MEK6/7 or at least enhances their 
autophosphorylation (as shown by 
overexpression studies in COS-7 cells48a); 
but: relevance for hepatic IL-1 signalling 
has to be checked! 

32 mekk3 = mek7 1 0.4 

33 mkp1 = tdum_mkp1_p38_jnk_erk12 2 0.4 timescale dummy activation 

34a mek3  

= dum_mek3_or_4_or_6_nuc_p38 

1 0.4 dummy activation 

34b mek4  

= dum_mek3_or_4_or_6_nuc_p38 

1 0.4 

34c mek6  

= dum_mek3_or_4_or_6_nuc_p38 

1 0.4 

34 dum_mek3_or_4_or_6_nuc_p38 · 
!mkp1 = nuc_p38 

1 0.4 although not proved for hepatic IL-1 
signalling yet, MEK4 generally acts as a 
MAP2K for JNK and p38, preferentially 
phosphorylating nuclear p38 at T180 
and/or Y182 within its tripeptide dual 
phosphorylation motif, leading to p38 
activation and nuclear export/cytosolic 
accumulation (IL-1-induced p38-T180/ 
Y182 phosphorylation detectable within 
5 min as shown for HepG2 cells78a); MEK3 
and MEK6 are regarded as sheer p38 
activators18a, 54a; MKP1 selectively interacts 
with and dephosphorylates (inactivates) 
ERK2, JNK1, and p38α within their kinase 
actvation loops164a, gaining its catalytic 
activity through association with the C-
terminal domains of the above-mentioned 
kinases (as shown for p3879a); but: 
individual relevance of MEK3/4 or -6 and 
MKP1 for hepatic IL-1 signalling has to be 
checked! 

35 nuc_p38 = mk2 1 0.8 p38 interacts with and activates nuclear 
MK2 (as shown for IL-1-treated primary 
monocytes and U-937 cells2a) possibly by 
phosphorylating T222, S272, and T334 in 
response to IL-1, causing its nuclear 
export18a, 189a 

36 mk2 = hsp27_ps 1 0.8 IL-1 induces HSP27 phosphorylation at 
S78 and S82 by activated MK2, promoting 
the TRAF6:HSP27 dissociation, which in 
turn depresses IKK activation → negative 
feedback loop (as shown in IL-1-treated 
HeLa cells194a) 
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37 mk2 · nuc_p38 = cyt_p38 1 0.4 stimulus-induced activation of nuclear p38 
leads to MK2 phosphorylation/activation by 
p38, probably causing conformational 
changes, masking the nuclear localisation 
signal (NLS) and eventually exposing a 
nuclear export signal (NES) of MK2, which 
entails the cytoplasmic relocalisation/ 
nuclear export of the p38:MK2 complex (as 
shown for sodium arsenite-treated 
HEK293T cells18a) 

38 !cyt_p38 = ksrp 1 0.8 p38-catalysed KSRP phosphorylation 
(presumeably T692) reduces its affinity to 
AREs and counteracts its destabilising 
effect on mRNAs (as shown or IL-1-treated 
HeLa cells191a (and references cited 
therein)), but: relevance for hepatic IL-1 
signalling has to be checked! 

39 !mk2 = ttp 1 0.4 MK2-catalysed TTP phosphorylation (S52, 
S178) reduces its affinity to AREs and 
counteracts its destabilising effect on 
mRNAs (as shown for anisomycin-treated 
NIH 3T3 cells41a and by overexpression 
studies in HEK293 cells74a), but: relevance 
for hepatic IL-1 signalling has to be 
checked! 

40a mek4 = dum_mek4_or_7_jnk 2 0.4 dummy activation 

40b mek7 = dum_mek4_or_7_jnk 1 0.8 

40 dum_mek4_or_7_jnk · !mkp1 

= jnk 

1 0.6 IL-1 induces JNK phosphorylation (T183/ 
Y185)/activation within 5 min (up to 45 min) 
in HepB36a or HepG2 cells78a; MEK4 binds 
JNK via its conserved, N-terminal MAPK 
docking site (”D-site”, residues 38 - 48) and 
mediates its activation (as shown in 
vitro54a, 75a); MEK7 was shown (by co-
transfection assays in COS cells) to act as 
a specific and more potent activator of 
JNK177a; MEK4 and MEK7 preferentially 
phosphorylate JNK on Y182 (MEK4) and 
T180 (MEK7) within its tripeptide dual 
phosphorylation motif, leading to optimal 
JNK activity and nuclear translocation, but: 
T180-phosphorylation by MEK7 alone 
seems sufficient for partial JNK activation 
in response to IL-1 (as shown in IL-1-
treated MEFs178a); hence, the impact of 
MEK4 on JNK activity will initially be 
regarded as secondary!; MKP1 selectively 
interacts with and dephosphorylates/ 
inactivates ERK2, JNK1, and p38α within 
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 their kinase actvation loops (as shown for 
serum- and anisomycin-treated COS-1 
cells164a), but: individual relevance for 
hepatic IL-1 signalling has to be checked! 

41a tpl2_degr = tdum_tpl2_degr_tpl2 2 0.8 timescale dummy activation 

41 src · abin2 · !p105 · !tpl2_degr 

= tpl2 

1 0.6 the majority of the cellular pool of TPL2 is 
complexed with p105 (as shown in HeLa 
cells17a), whereby p105 inhibits the MEK 
kinase activity of TLP2 through 
p105-DD:TLP2-KD interaction (a further 
association of the TLP2 C-terminus and a 
region N-terminal to the p105 ankyrin 
repeats ensures metabolic stability of TPL2 
in the absence of stimuli, maintaining its 
steady-state expression15a, 184a); an 
additional TPL2 phosphorylation at T290 
(leading to S62 autophosphorylation) within 
the activation loop by a yet unidentified 
kinase (distinct from IKKβ, potentially a Src 
kinase) seems essential for catalytic TLP2 
activity in response to IL-1 (as shown for 
IL-1-treated HEK293167a and HeLa 
cells149a); ABIN2 specifically forms a 
ternary complex with TPL2 and p105, 
contributing to metabolic TPL2 stability; 
although TLP2 activation correlates with its 
release from ABIN2, the latter does not 
seem to function as an inhibitor of TPL2 
MEK kinase activity (as shown for LPS-
treated BMDMs (bone marrow-derived 
macrophages)108a, 137a) 

42 tpl2 = tpl2_degr 1 0.8 the pool of free, catalytically active TPL2 
decreases 30 – 45 min after IL-1 
stimulation due to proteolysis, outlining a 
negative feedback mechanism (as shown 
for IL-1-treated HeLa149a and LPS-treated 
RAW264.7 cells16a) 

43 tpl2 = mek1 1 0.6 TPL2 functions as a direct activator on 
MEK1 by phosphorylating MEK1-S217 
and/or S221 (as shown in vitro153a and for 
LPS-treated RAW264.7 cells16a) and is the 
only currently known MAP3K that triggers 
ERK1/2 activation in response to IL-1149a 

44 mek1 · !mkp1 = erk12 1 0.6 MEK1 acts as a direct activator on ERK1/2 
(for review see [148a]; maximal, IL-1-
induced ERK1/2 phosphorylation (ERK1: 
T202/Y204)/activation detectable within 
15 - 30 min in HeLa cells149a); ERK1/2 
activation might lead to their subsequent 
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 nuclear translocation (as shown for serum-
stimulated HeLa cells36a); MKP1 selectively 
interacts with and inactivates ERK2, JNK1, 
and p38α by dephosphorylation within their 
kinase activation loops (as shown by co-
expression studies in COS-1 cells164a) 

PI3K/Akt signalling 

45 il1rc * myd88 = pi3k 1 0.8 IL-1 transiently stimulates PI3K activity 
within 0.5 – 3 min (decline after 3 min; as 
shown for HepG2 cells147a, 162a) and 
induces IL-1RI(p)Y496:p85147a and/or 
IL-1RAcP:p85 interaction162a; owing to the 
detectable association of Rac1 (PI3K 
regulator/Rho family GTPase) and MyD88 
(interacting with the IL-1R complex; as 
shown for IL-1-treated EL4.NOB-1 cells86a), 
the latter might contribute to PI3K 
activation 

46 pi3k · !pten = pip3 1 1.0 as established, PI3K catalyses the 
phosphorylation of PIP2 (phosphatidyl-
inositol(4,5)-bisphosphate) to generate 
PIP3; for review see [180a]; direct 
correlation between PI3K activity and PIP3 
concentration demonstrated for IL-1-
treated HepG2 cells162a); endogenous 
PTEN reverses the reaction114a and was 
shown to inhibit IL-1-induced NF-κB-
dependent transcriptional activity due to its 
lipid phospatase function (as shown for 
MEFs163a) 

47 pip3 · pdk1 · mtorc2 = akt 1 0.6 IL-1 stimulates Akt phosphorylation 
(S473175a) within 15 min PI3K-dependently 
(as shown for primary rat hepatocytes175a 
and MEFs163a) possibly involving mTORC2 
(as shown for IL-6-treated HepG2 cells40a); 
PDK1, (when bound to PIP3 at the plasma 
membrane as Akt) might contribute to the 
initial T308 phosphorylation within the 
activation loop of Akt (as shown for IL-6-
treated HepG2 cells40a); but: individual 
relevances of PDK1 and mTORC2 for 
hepatic IL-1 signalling have to be checked!  

48 !akt = gsk3b 1 1.0 IL-1 induces inhibitory S21 phosphorylation 
of GSK3α (→ established downstream 
target of PI3K/Akt signalling) within 15 min 
in a PI3K-dependent manner (as shown for 
HepG2 cells162a); but: relevance for yet 
demonstrated GSK3β-mediated co-
regulation of transcriptional NF-κB activity 
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 (as shown for TNFα-treated MEFs168a) or a 
possible IL-1-stimulated GSK3β-S9 
phosphorylation has to be checked! 

NF-κB activation 

49 ikkb · nemo = ikkbb_nemo 1 0.4 NEMO (itself forming multimers) interacts 
with the C-terminal SCD (serine cluster 
domain) of IKKα and -β via its N-terminal 
half, leading to oligomerisation of the 
catalytic subunits (homo- vs. 
heterodimerization; for review see [133a]), 
which in turn may trigger the 
autophosphorylation of their T loops in 
trans, resulting in full kinase activity142a 
(overexpression of IKKα/β or direct 
phosphorylation bypasses the NEMO-
induced oligomerisation) → association 
seems critical for the assembly of high 
molecular weight canonical IKK 
complexes, facilitating the recruitment of 
IκB proteins and the onset of IKK kinase 
activity156a (for review see [155a]); although 
IL-1 has been shown to increase IKKβ 
activity143a and to alternatively signal via 
NEMO:IKKα:IKKα complexes196a, 200a, the 
individual relevance for hepatic IL-1 
signalling has to be checked! 

50 ikkb · ikka · nemo = ikkab_nemo 1 0.8 

51 ikka · nemo = ikkaa_nemo 1 0.8 

52 ikka = ikkaa 1 0.8 IKKα was also shown to homodimerise, 
generating noncanonical IKK complexes in 
a NEMO-independent manner but requiring 
NIK for catalytic activity (for review see 
[155a]); relevance confirmed for IL-1-
treated HEK293 cells112a 

53 abin2 = a20 1 0.4 ABIN2 (constitutively expressed in different 
cell types179a) may directly interact with the 
C-terminal ZnF domain of A20 via its AHD1 
domain and binds polyubiquitinated NEMO 
possibly via its UBAN and 4th CC domain 
(as shown for TNF-treated HEK293T 
cells181a), which inhibits NF-κB activation 
(as shown for IL-1-treated HEK293T 
cells179a) likely through competition with 
upstream effectors for NEMO interaction 
(as shown by co-expression studies in 
HEK293T cells113a) and/or linking A20 to 
NEMO, leading to subsequent proteasomal 
NEMO degradation185a 

54 !a20 = nemo 2 0.8 

55a tak1_tab · irak1_ub  

= dum_tak1_tab_or_mekk3_ikkb_a 

1 0.8 dummy activation 
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55b mekk3  

= dum_tak1_tab_or_mekk3_ikkb_a 

2 0.4 

55c ikkbb_nemo  

= dum_ikkab_or_ikkbb_nemo_ikkb_a 

1 0.4  

55d ikkab_nemo  

= dum_ikkab_or_ikkbb_nemo_ikkb_a 

1 0.8  

55 dum_tak1_tab_or_mekk3_ikkb_a · 
dum_ikkab_or_ikkbb_nemo_ikkb_a  

= ikkb_a 

1 0.6 IL-1 induces a rapid (within 10 min), but 
transient NEMO (IKKγ) phosphorylation 
that correlates with an increase in IKKβ 
activity143a; IRAK1 K63-linked poly-
ubiquitination (K134, K208) in response to 
IL-1 stimulation provides docking sites for 
NEMO (via its UBD193a; no interaction of 
NEMO and ubiqutinated TRAF6, as shown 
for IL-1-treated HEK293 cells44a) and may 
enable TRAF6-associated TAK1 to 
mediate the phosphorylation/activation of 
the IKK complex135a (as shown for IL-1-
treated HEK293 cells200a); NEMO 
phosphorylation in response to IL-1 might 
also occur TAK1-independently but 
MEKK3-dependently (therefore, IRAK1 
polyubiquitination seems dispensable; as 
shown for IL-1-treated human 
synoviocytes200a) → transient formation of 
a MEKK3:IκBα:NF-κB:IKK complex in 
response to IL-1 (as shown for IL-1-treated 
MEFs156a); activated TAK1 (ubiquitinated 
by TRIKA1 and TRAF6) causes a specific 
IKKβ-S177/181 phosphorylation, acting as 
a ubiquitin-dependent IKK kinase (as 
shown in vitro183a); active MEKK3 might 
directly phosphorylate IKKβ at S177 and 
S181 within its activation loop in response 
to IL-1 (as shown for TNFα-treated 
MEFs156a; T-loop phosphorylation of IKKβ, 
but not IKKα, followed by its progressive 
autophospho-rylation at multiple C-terminal 
serines seems sufficient for IKK 
activation52a) and seems to contribute to 
rapid and transient NF-κB activation via 
IκBα degradation (as shown for IL-1-
treated MEFs156a; but: no detectable IκBα 
degradation in IL-1-treated TAK1-deficient 
MEFs200a, thus the impact of MEKK3 is so 
far regarded as secondary!); but: the 
individual relevance of TAK1, MEKK3 and 
IKK subunit constellation for hepatic, IL-1-
induced IKK activation has to be checked!  
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56 mekk3 · ikkaa_nemo = ikka_a 1 0.8 MEKK3 seems to specifically activate 
NEMO:IKKα:IKKα complexes → the TAK1-
independent/MEKK3-dependent (”Zinc”) 
pathway may be mainly involved in the late 
phase (30 – 60 min after stimulation) of 
NF-κB activation and/or in the presence of 
low IL-1 concentrations (0.1 ng/ml)196a, 200a; 
but: relevance for hepatic IL-1 signalling 
has to be checked!  

57 tak1_tab = nik 1 0.8 TAK1 phosphorylates/activates NIK in 
response to IL-1 (as shown for HEK293 
cells131a) 

58 nik · ikkaa = nc_nfkb_pathway 1 0.8 NIK and IKKα homodimers (NEMO-
independently50a) act upstream of 
p100/p52:RelB heterodimers (→ 
alternative/noncanonical NF-κB activation 
pathway)51a; NIK functions as a direct IKKα 
kinase, phosphorylating IKKα-S176 within 
the kinase activation loop in response to 
IL-1 (as shown for HEK293 cells112a), which 
might be a prerequisite for p100 
processing within the noncanonical NF-κB 
activation pathway (for review see [51a]); 
but: relevance for hepatic IL-1 signalling 
not yet demonstrated! 

59 nc_nfkb_pathway → 1 0.8 model output 

60 ikkb_a = p105_degr 1 0.8 IKKα and IKKβ constitutively (hardly 
increased by TNFα stimulation) associate 
with NF-κB1 p105 via its death domain 
(DD), facilitating the IKK-mediated 
phosphorylation and subsequent 
proteolysis of p105, leading to TPL2 
release from its inhibitor, which triggers the 
catalytic kinase activity (as shown in 
response to TNFα or LPS14a, 16a and 
IL-1149a); signal-induced, IKK-mediated 
phosphorylation of p105 within the PEST 
region (S927, S932) may target it for 
βTrCP-catalysed polyubiquitination causing 
proteasomal degradation (as shown upon 
TNFα107a and IL-1 treatment154a); but: 
whether IKKα presence is dispensable has 
to be checked! 

61 !p105_degr = p105 1 0.8 IL-1-induced proteasomal p105 
degradation reduces the amount of 
inhibitory p105 (as shown for HeLa cells 
and human primary synoviocytes149a) 

62 p105_degr = p50 1 0.4 p50 is generated through limited 
proteolysis (post- vs. co-translational) due 
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to a glycine-rich region (GRR) within the C-
terminal half of the p50 moiety of p105, 
which seems to act as a physical barrier to 
26S proteasome entry (as shown in 
vitro136a; for review see [129a]); but: 
relevance for hepatic IL-1 signalling has to 
be checked! 

63a ikkab_nemo · akt  

= dum_ikkab_nemo_akt_or_ck2_p65 

1 0.8 IL-1 mediates the regulatory S536-
phosphorylation within the C-terminal 
transactivation domain 1 (TAD1) of p65 
IKKβ-dependently (and via additional 
kinases, which may act redundantly), 
increasing its transcriptional activity (as 
shown in in HeLa31a and HepG2 cells4a) → 
evidences for a PI3K-initiated NF-κB 
activation pathway distinct from IκB 
degradation, nuclear translocation and 
DNA binding stressed by a PI3K-mediated 
p65 phosphorylation within its TAD upon 
IL-1 stimulation (as shown for HepG2 
cells162a); whereas IKKβ seems essential 
for IκBα degradation, IKKα is required for 
PI3K/Akt-dependent p65 phosphorylation 
(TAD) and transactivation but dispensable 
for NF-κB liberation (no efficient p65-TAD 
phosphorylation, but functional IκBα 
degradation in IL-1-treated IKKα-deficient 
MEFs; PI3K/Akt pathway does not 
participate in NF-κB liberation163a); 
nevertheless, both IKKα and -β (most likely 
complexed to NEMO) contribute to 
PI3K/Akt-mediated NF-κB activation163a → 
IKKβ was shown to phosphorylate p65-
S468 within TAD2 (corresponding to 
TAD1-S536) while the latter is bound to 
IκB, suggesting multiple IKK sites with 
additive or redundant functions (as shown 
for IL-1-treated Hep3B cells and primary 
HSCs (primary human hepatic stellate 
cells)157a); IL-1 was also shown to induce 
the positive regulatory p65 phosphorylation 
at serine residues by CK2 in HepG2 
cells23a (cytoplasmic CK2:NF-κB interaction 
detectable within 2 – 5 min after IL-1 
treatment), but whether CK2 functions 
synergistically or redundantly has to be 
worked out! (p)S276 critical for p65-
dependent IL-6 production in response to 
IL-1134a); necessity of explicit IKK activation 
e.g. via TAK1 or MEKK3 not yet 
demonstrated!  

63b ck2  

= dum_ikkab_nemo_akt_or_ck2_p65 

1 1.0 

63 dum_ikkab_nemo_akt_or_ck2_p65 · 
!socs1 = p65 

1 0.8 
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⇒  link to IL-6: SOCS1 inhibits NF-κB 
activation in response to IL-1 or LPS 
possibly by acting as an ubiquitin ligase on 
p65, supporting its degradation (as shown 
for MEFs151a) 

64 ikkb_a = ikba_degr 1 1.0 IL-1 induces IKKα/β phosphorylation183a via 
the TAK1-dependent ”RING” pathway, 
leading to kinase-active IKKβ and 
phosphorylation of IκBα at S32 and S36, 
which targets it for proteasomal degra-
dation (detectable within 2 – 5 min upon 
IL-1 treatment of HepG2 cells4a; no 
detectable IκBα degradation in IL-1-treated 
TAK1-deficient MEFs200a!) → the TAK1-
dependent ”RING” pathway might be 
mainly involved in the early phase (0 – 
30 min after stimulation) of NF-κB 
activation and/or in the presence of high 
IL-1 concentrations (10 ng/ml)196a, 200a; 
generally, IKKβ seems essential, whereas 
IKKα might be dispensable for IκBα 
degradation and subsequent NF-κB 
liberation (substantially deficient IκBα 
degradation in IKKβ-null MEFs upon IL-1 
stimulation163a); nevertheless, mere IκBα 
degradation insufficient for IL-1-induced 
NF-κB-dependent gene transcription19a 

65 ck2 = ikba_degr 2 0.4 CK2 was found to phosphorylate IκBα, 
triggering its degradation (for review see 
[161a]); but: relevance for hepatic IL-1 
signalling has to be checked, thus 
regarded as initially secondary pending 
further notice! 

66 ikkaa · nik = ikba_degr 2 0.4 IKKα-S176 phosphorylation/activation by 
NIK significantly increases IκBα 
phosphorylation and transcriptional NF-κB 
activity (as shown by overexpression 
studies in HeLa and HEK293 cells112a) 
suggesting their impact on IκBα 
degradation; confirmed by detectable IκBα 
degradation (within 20 min) upon IL-1 
treatment of HeLa cells in the presence of 
IKKβ inhibitor SC-514149a; but: relevance 
for hepatic IL-1 signalling has to be 
checked, thus regarded as initially 
secondary pending further notice! 

67 ikka_a = ikba_diss 1 0.8 IL-1 also effects the phosphorylation of 
NEMO and IKKα activation in IKKβ-
deficient MEFs probably via the TAK1-
independent/MEKK3-dependent (”Zinc”) 
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 pathway, resulting in NF-κB activation 
through different/incomplete IκBα 
phosphorylation ((p)S36 only) and 
subsequent inhibitor dissociation (→ no 
degra-dation!)200a; the latter might be due 
to impaired βTrcP E3 ligase binding; but: 
effect predominantly present in primary 
intestine/colon epithelial cells200a, therefore 
relevance for hepatic IL-1 signalling has to 
be checked! 

68 !ikba_degr · !ikba_diss = ikba 1 1.0 IκBα degradation (detectable within 2 – 
5 min upon IL-1 stimulation of HepG2 
cells4a) and/or time-delayed dissociation 
(as shown for IL-1-treated MEFs200a) 
counteract its inhibitory effect on NF-κB 

69 p50 · p65 · !ikba = nfkb 1 1.0 as generally accepted, IκBα interacts with 
the NF-κB p50:p65 (= RelA) heterodimer 
and blocks its nuclear translocation as well 
as transcriptional activity; the inhibitory 
effect is removed upon IκBα proteolysis 
(for review see [129a]); IL-1 was shown to 
induce the nuclear translocation of p50 and 
p65 in HepG2 cells23a, 192a 

70 nfkb = ikba 2 0.8 p50:p65 heterodimers bind to the iκbα 
promoter and induce IκBα gene expression 
(detectable within 1 h in IL-1-treated 
1321N1 cells (human astrocytoma cell 
line)65a) → potential autoregulatory 
negative feedback loop169a 

71 nfkb · jnk · ck2 = cebpd 1 1.0 IL-1 induces C/EBPδ gene expression in 
Hep3B cells (peaks at 3 h) in a p50:p65-, 
JNK-, and CK2-dependent manner6a 

72 nuc_p38 * erk12 = cebpb 1 0.6 C/EBPβ is constitutively expressed (as 
shown for HepG2 cells61a), though 
intrinsically repressed in adult hepatocytes 
(the C/EBPβ mRNA pool is rapidly 
increased by IL-1 in a liver-specific 
manner; for review see [26a]) and appears 
to be activated mainly by posttranslational 
modifications141a; therefore p38 seems 
essential (as shown for IL-1β expression 
by RAW264.7 cells (murine macrophages) 
in response to LPS12a); ERK1/2 were 
shown to phosphorylate C/EBPβ-T235 in 
IL-1-treated A549 lung carcinoma cells10a; 
but: no current link to hepatic IL-1 
signalling! 
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73 !erk12 = nalp_infl 1 0.6 ERK1/2 were shown to mediate C/EBPβ-
T266 phosphorylation (possibly via 
p90RSK activation), causing an increased 
C/EBPβ:pro-Casp association, that 
impedes subsequent caspase activation 
(as shown for CCl4-treated primary human 
HSCs (hepatic stellate cells) relating to 
Casp827a); though not proved yet, this 
negative regulatory mechanism might 
inhibit signal amplification by preventing 
the accumulation of pro-inflammatory 
IL-126a 

74a cebpb = dum_cebp_pro_il1b 1 0.4 dummy activation 

74b cebpd = dum_cebp_pro_il1b 1 0.4 

74 dum_cebp_pro_il1b · nfkb · ck2 ·  

cjun = pro_il1b 

1 0.4 PU.1 (ETS transcription factor) and 
C/EBPβ (or C/EBPδ12a; bound to the il1β 
locus) recruit c-Jun homodimers as co-
activators, supporting polymerase II 
interaction and transactivation of the il1β 
promoter in response to TPA (as shown for 
RAW cells (murine macrophages)66a); CK2 
triggers NF-κB and IRF (interferon 
regulatory factor) association with the il1β 
promoter/enhancer upon LPS stimulation 
of MM6 monocytes (detectable within 
30 min) by modulating PU.1-S148 
phosphorylation, which in turn regulates 
IRF-4 recruitment and facilitates 
polymerase II binding203a → transcriptional 
IL-1β regulation may involve the inducible 
and/or constitutive binding of IRF4, IRF8, 
NF-κB p65, c-Jun homodimers, C/EBPβ, 
and PU.1 (SPI-1) to the il1 locus203a; but: 
the respective relevance for hepatic IL-1 
signalling has to be checked! 

75 pro_il1b · nalp_infl = il1b_new 1 0.4 pro-IL-1β is cleaved at D116 by Casp1 
(caspase 1, NALP-inflammasome-
associated!) to generate the mature, active 
IL-1β peptide p17 (as shown for LPS-
treated THP-1 cells, human keratinocytes, 
and murine macrophages93a, 116a, for review 
see [117a]); whether IL-1 stimulation of 
hepatocytes triggers an autocrine positive 
feedback loop by newly synthesised IL-1 
peptids controlled by the inflammasome 
has to be checked! 

76 il1b_new → 1 0.4 model output 
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77a cebpb = dum_cebp_il1ra 1 1.0 dummy activation 

77b cebpd = dum_cebp_il1ra 1 1.0 

77 dum_cebp_il1ra · nfkb = il1ra 1 1.0 IL-1β is a potent inducer of IL-1Ra 
expression by human primary hepatocytes 
and HepG2 cells (combination of IL-1β and 
IL-6 exhibits a strong synergistic effect; 
detectable within 4 h/increase through 
72 h); therefore NF-κB p65 and C/EBPδ (or 
to a lesser extend C/EBPβ) trigger IL-1Ra 
gene expression (as shown for IL-1- and/or 
IL-6-treated HepG2 cells61a) → negative 
feedback loop 

78a cebpb = dum_cebp_saa 1 1.0 dummy activation 

78b cebpd = dum_cebp_saa 1 1.0 

78 dum_cebp_saa · nfkb = saa 1 1.0 IL-1 induces SAA2 (serum amyloid A2; 
acute-phase protein) expression via NF-κB 
p50:p65 and C/EBPβ and/or -δ in HepG2 
and murine embryonic liver cells, 
respectively146a, 195a (posttranslational 
phosphorylation of C/EBPδ was shown to 
enhance its transactivation potential146a) 

79 saa → 1 1.0 model output 

80 cebpb · ap1 = lbp 1 1.0 IL-1 induces and/or augments LBP (LPS 
binding protein; acute-phase protein) 
expression via AP-1 and C/EBPβ in human 
hepatoma or murine embryonic liver cells, 
respectively97a, 146a, 195a 

81 lbp → 1 1.0 model output 

82a cebpb = dum_cebp_cox2 1 0.8 dummy activation 

82b cebpd = dum_cebp_cox2 1 0.8 

82 dum_cebp_cox2 * nfkb * cjun * ap1  

= cox2 

1 0.6 IL-1 induces and might prolong COX2 
gene expression possibly by temporarily 
altering transcription factor sets including 
NF-κB p50:p65 hetero- and/or p50 
homodimers, members of the AP-1 
transcription factor family (predominantly 
phosphorylated c-Jun homodimers), and 
C/EBP transcription factors (as partly 
shown for IL-1-treated primary human ASM 
or HeLa5a, 130a and LPS-treated RAW264.7 
cells91a); but: relevance for hepatic IL-1 
signalling has to be checked! 

83 cox2 → 1 0.6 model output 
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HNF and AP-1 activation 

84 nuc_p38 · ros = hnf4a 1 1.0 IL-1β and ROS induce a specific HNF4α-
serine phosphorylation pattern (S133/S134 
[basal]; S158, S181, S304, T450), that 
increases constitutive HNF4α binding to 
the inos promoter; therefore p38-catalysed 
(p)S158 seems critcial for IRX 
(inflammatory redox)-dependent up-
regulation of HNF4α-mediated inos 
promoter activity, facilitating HNF4α:PC4 
(transcriptional co-activator) association 
(as shown for IL-1 + H2O2-treated HepG2 
cells68a, 69a) 

85 hnf4a * nfkb = inos 1 0.8 HNF4α up-regulates iNOS gene 
expression and mRNA levels (as shown for 
IL-1 + H2O2-treated HepG2 cells68a, 69a); 
IL-1β was also shown to induce iNOS 
expression via NF-κB activation in different 
cell types132a (for review see [98a]), but: 
relevance for hepatic IL-1 signalling has to 
be checked! 

86 inos → 1 1.0 model output 

87 !inos · !nfkb = ros 2 0.6 antioxidant iNOS is up-regulated by the 
hepatocellular redox state (IRX-
dependently) and counteracts ROS 
(reactive oxygen species) by generating 
NO as an ubiquitous, multifunctional free 
radical, eradicating infection and limiting 
tissue injury69a (and references cited 
therein); additionally, NF-κB functions in an 
antioxidant manner in part through up-
regulation of FHC (ferritin heavy chain)- 
and superoxide dismutase 2 gene 
expression (as shown within 1 h for TNFα-
treated MEFs140a), preventing ROS 
accumulation72a (and references cited 
therein); but: relevance for hepatic IL-1 
signalling has to be cecked! 

88 nuc_p38 = msk1 1 0.6 IL-1 induces MSK1-S376 phosphorylation/ 
activation in HepG2 cells78a; ERK1/2 or p38 
seem capable of activating MSK1 (as 
shown for EGF- or TPA-treated HEK293 
and TNF-treated HeLa cells49a); but: a 
similar function in the context of hepatic 
IL-1 signalling has to be verified! 

89 erk12 = msk1 1 0.6 

  

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2011



Ryll et al.: Large-scale network models of IL-1 and IL-6 signalling and their hepatocellular specification  S51 
 

Supplements | VIII. Model documentations: IL-1 
 

90 msk1 = cjun_gene 2 0.4 IL-1 up-regulates c-Jun- and c-Fos mRNA 
levels/gene transcription in HepG2 cells 
within 15 min42a, 124a; therefore MSK1 might 
indirectly contribute to increased 
immediate early (IE) gene expression by 
histone H3-S10 phosphorylation (as shown 
for TPA- and anisomycin-treated 
MEFs166a), altering induction efficiency; but: 
the mechanism of hepatic c-Jun 
enhancement by IL-1 has yet to be 
resolved, hence not being initially 
considered! 

91 cjun_gene = cjun 2 0.4 

92 jnk = cjun 1 0.8 JNK interacts with and phosphorylates 
c-Jun at least at S63 and/or S73 within its 
N-terminal transactivation domain (TAD), 
increasing its transcriptional activity (as 
shown for IL-1-treated human MRC5 
fibroblasts and MEFs192a) 

93 nuc_p38 * jnk * erk12 = atf2 1 0.6 JNK (and p38, thus alternatively or 
redundantly) bind(s) to and 
phosphorylate(s) ATF2 at T69 and T71 
within its activation domain upon IL-1 
stimulation, causing increased 
transcriptional activity (as shown for IL-1-
treated CHO cells70a and EGF- and TNFα-
treated MEFs122a); but: the individual 
relevance for hepatic IL-1 signalling has to 
be checked! (IL-1 induces ATF2/c-Jun 
phosphorylation within 15 – 30 min upon 
stimulation of HepG2 cells42a); ERK1/2 
seem only able to phosphorylate ATF2-T71 
and might thus partially replace JNK and/or 
p38 function (as shown for TNFα-treated 
MEFs122a) 

94 nuc_p38 * jnk * erk12 = sap1 1 0.6 p38 phosphorylates SAP-1 (probably S381 
and S287) in response to IL-1 in a strictly 
cell-type specific manner, leading to 
increased ternary complex formation, DNA 
binding activity, transcriptional activation 
and SRE (small response element)-
dependent gene expression84a (as shown 
for IL-1-treated CHO and NIH 3T3 
cells190a); SAP-1 was shown to serve as a 
convergence point for all three major 
MAPK classes (p38, ERK, JNK)84a; but: no 
detectable IL-1-induced, JNK-mediated 
transcriptional activity of SAP-1 in CHO 
cells190a; the individual relevance for 
hepatic IL-1 signalling has to be checked! 
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95 nuc_p38 * jnk * erk12 = elk1 1 0.8 p38 and/or JNK phosphorylate Elk-1 
(probably at S383, S389) in response to 
IL-1 strictly cell-type specifically, leading to 
increased ternary complex formation, DNA 
binding activity, transcriptional activation 
and SRE (small response element)-
dependent gene expression, whereas p38 
might be an inferior Elk-1 activator84a (as 
shown for IL-1-treated CHO and NIH 3T3 
cells190a); ERK1/2 target Elk-1 via the Elk-1 
D domain to promote its transcriptional 
activation (as shown for IL-1-treated CHO 
and NIH 3T3 cells199a) likely by 
phosphorylation (as proposed by [35a]); but: 
the individual relevance for hepatic IL-1 
signalling has to be checked! 

96a sap1 * elk1  

= dum_sap1_or_elk1_cfos 

1 0.8 dummy activation 

96 dum_sap1_or_elk1_cfos · msk1 

= cfos 

1 0.6 active SAP-1 and/or Elk-1 interact with 
SRF (small response factor), forming a 
ternary complex that may bind to the SRE 
(small response element) within the cfos 
promoter, mediating increased c-Fos gene 
expression upon IL-1 stimulation43a, 45a (as 
shown for IL-1-treated CHO and NIH 3T3 
cells190a); IL-1 up-regulates c-Jun and 
c-Fos mRNA levels/gene transcription in 
HepG2 cells124a, therefore MSK1-catalysed 
CREB (cAMP-response element binding 
protein) S133 phosphorylation (as shown 
for TNF-treated HeLa cells49a) and 
subsequent CREB:CRE (cAMP response 
element) association within the c-fos 
promoter may be essential for c-Fos 
expression49a, 166a (not yet checked within 
the hepatic IL-1 signalling context!); 
additionally, MSK1 might indirectly 
contribute to increased immediate early 
(IE) gene expression by histone H3-S10 
phosphorylation (as shown for TPA- and 
anisomycin-treated MEFs166a), altering 
induction efficiency 

97 atf2 * cjun * cfos = ap1 1 1.0 AP-1 proteins (e.g. c-Jun, c-Fos, ATF2) 
form homo- and/or heterodimers via their 
leucine-zipper domains, whereas the 
combination determines the subsequent 
gene regulation by AP-1 (for review see 
[59a]); activity of heterodimeric AP-1 
detectable within 15 min upon IL-1 
treatment of HepG2 cells124a 
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98 ap1 = mkp1 1 0.4 IL-1 rapidly up-regulates the transient 
MKP1 expression109a (maximal at 1 h post 
stimulation, as shown for human fibroblast-
like synoviocytes (FLS) related to 
rheumatoid arthritis176a); AP-1, beside other 
transcription factors, might contribute to 
MKP1 gene expression (for review see 
[102a]); but: relevance for hepatic IL-1 
signalling has to be checked! 

99 !ksrp · !ttp · ap1 · nfkb · 

cebpb · gsk3 = il6 

1 0.6 TTP binds adenine/uridine-rich elements 
(AREs) within the 3’-untranslated region 
(UTR) of cytokine mRNA, targeting mRNA 
transcripts for degradation possibly by 
deadenylation to maintain low levels of 
inflammatory cytokines24a, 74a → probably 
TTP-mediated posttranscriptional 
regulation of IL-1-induced IL-6 mRNA 
transcripts (as shown for IL-1-treated 
MC3T3-E1 cells138a and LPS-treated 
RAW264.7 macrophages139a); KSRP 
interacts with IL-6 mRNA AREs, promoting 
the deadenylation and degradation of IL-1-
induced IL-6 transcripts (as shown for IL-1-
treated HeLa cells191a); p50:p65 
heterodimers, C/EBPβ, CBF-1 (C-promoter 
binding factor 1), and AP-1 contribute to 
IL-1-induced IL-6 gene expression3a, 101a 
(as shown for IL-1-treated human primary 
FLSs (rheumatoid fibroblast-like 
synoviocytes)120a); 

⇒  link to IL-6: GSK3β controls promoter-
specific NF-κB recruitment in a gene-
specific manner, therefore being essential 
for efficient IL-6 and CCL2 expression (as 
shown in TNFα-treated MEFs168a) 

100 il6 → 1 0.6 model output 

101 !ksrp · !ttp · nfkb · cfos · ap1 = il8 1 0.8 TTP binds adenine/uridine-rich elements 
(AREs) within the 3’-untranslated region 
(UTR) of cytokine mRNA, targeting mRNA 
transcripts for degradation possibly by 
deadenylation to maintain low levels of 
inflammatory cytokines11a, 24a, 74a → TTP-
mediated posttranscriptional regulation of 
IL-1-induced IL-8 mRNA transcripts (as 
shown for IL-1-treated HeLa191a and 
pulmonary A549 cells96a); KSRP interacts 
with IL-8 mRNA AREs, promoting the 
deadeny-lation and degradation of IL-1-
induced IL-8 transcripts (as shown for 
HeLa191a and malignant 
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 HS578t/MDA-MB-231 breast cancer 
cells170a); c-Fos synergises with NF-κB p65 
in transactivating IL-8 gene expression 
(p65: il8 promoter interaction and 
subsequent RNA polymerase II recruitment 
detectable within 30 min upon IL-1 
stimulation of KB cells77a; for review see 
[76a]) 

102 il8 → 1 0.8 model output 

103 ap1 · cjun · nfkb · gsk3 = ccl2 1 0.6 IL-1 induces CCL2 gene expression via 
c-Jun homo- and/or c-Jun:ATF2 
heterodimers (c-Fos less important), that 
recruit RNA polymerase II: JNK-catalysed 
c-Jun phosphorylation (S63/S73) promotes 
HDAC (histone deacetylase) dissociation, 
resulting in a modest increase in histone-
acetylation accross the ccl2 locus → 
rearranged chromatin structure may 
facilitate the essential p50:p65 recruitment, 
leading to CCL2 gene expression (as 
shown for IL-1-treated MEFs192a); 

⇒  link to IL-6: GSK3β controls promoter-
specific NF-κB recruitment in a gene-
specific manner, therefore being essential 
for efficient IL-6- and CCL2-expression (as 
shown for TNFα-treated MEFs168a); but: 
relevance for hepatic IL-1 signalling has to 
be checked! 

104 ccl2 → 1 0.6 model output 

105 ap1 · atf2 = upa 1 1.0 IL-1 induces the JNK-dependent uPA gene 
expression within 2 – 4 h in HepG2 cells 
via c-Jun:ATF2 hetero- and/or ATF2 
homodimers, whereas ERK1/2 seem 
dispensable42a 

106 upa → 1 1.0 model output 

Effects on insulin signalling 

107 erk12 = irs1_ps 1 0.4 JNK associates with IRS1 and promotes its 
S307 (as shown for TNFα-treated CHO 
cells1a) and S312 phosphorylation (as 
shown for IL-6-treated HUVECs7a) near the 
PTB domain, probably inhibiting its insulin-
stimulated Y phosphorylation as a 
prerequisite for downstream effectors (as 
shown in murine liver and for HepG2 
cells198a) and supporting its proteasomal 
degradation (for review see [174a]); 
ERK1/2 may exert their negative effect on 
IRS1 by phosphorylating S307 (for review 

108 jnk = irs1_ps 1 0.4 

109 ikkb_a = irs1_ps 1 0.6 
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 see [67a, 174a]), impairing IR-mediated 
IRS1-Y phosphorylation by inhibitory IRS1-
S616 phosphorylation (as shown for IL-6-
treated HUVECs (human umbilical vein 
endothelial cells)7a) and/or down-regulation 
of IRS1 expression through reduction of 
IRS1 mRNA (as shown in IL-1-treated 
3T3-L1 adipocytes83a); IKKβ negatively 
regulates IRS1 possibly by direct (or 
indirect) serine phosphorylation (as shown 
for TNFα-treated HepG2 cells62a) and/or 
up-regulation of tyrosine phosphatases or 
IL-6 (as shown in murine liver32a) via NF-κB 
(for review see [174a]); respective 
correlations with hepatic IL-1 signalling 
have to be verified! 

110 irs1_ps → 1 0.6 model output 

Effects on HGF signalling 

111 cebpb * cebpd = pro_hgf 1 0.6 IL-1 was shown to induce HGF gene 
expression and secretion of 
immunoreactive HGF in MRC-5 cells 
(human embryonic lung fibroblasts)173a; 
therefore, although just proved in response 
to IL-6 or TNFα stimulation, C/EBPβ and/or 
-δ might elicit hgf promoter activation and 
function as initiators of transcription (as 
shown for murine NIH 3T3 fibroblasts88a); 
but: relevance for hepatic IL-1 signalling 
has to be checked!  

112 upa · pro_hgf = hgf 1 0.4 uPA functions as a limiting, potent pro-
HGF/SF convertase, proteolytically 
cleaving the biologically inactive, matrix-
associated HGF precursor thereby 
generating the active mature HGF 
heterodimer and ensuring its bio-
availability128a (as shown for serum-treated 
MRC-5 human embryonic lung 
fibroblasts127a); but: relevance for hepatic 
IL-1 signalling has to be checked! 

113 hgf → 1 0.8 model output 
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VIII.B   IL-6 signalling 
 

Tab. S4.1. IL-6 signalling species. 

№ Model name Full name d Documentation 

1 1 a2m_gfbg α2M/γFBG  α2-macroglobulin and γ-fibirinogen; hepatic 
acute-phase proteins (APPs) 

2 2 akt* Akt  also: PKB (protein kinase B); oncogenic AGC 
kinase, serine/threonine-specific; transduces 
survival signals67b 

3 3 anti_apoptotic   viability counteracts apoptosis; the latter 
(induced by TGFβ/blocked by insulin or IRS in 
hepatocytes) ensures the maintenance of liver 
size/tissue homeostasis24b 

4 4 bad BAD  Bcl-2/Bcl-xL antagonist, causing cell death; 
member of the Bcl-2 family 

5 5 ca Ca2+  calcium; secondary messenger 

6 6 camk24 CaMK II/IV  Ca2+/calmodulin (CaM)-dependent protein 
kinase II/IV; multifunctional, serine/threonine- 
specific 

7 7 cam_ca   calmodulin (CaM):Ca2+ complex 

8 8 casp9 Casp9  caspase 9; intracellular protease 

9 9 cebpb C/EBPβ  CCAAT/enhancer binding protein β, also: LAP 
(liver activator protein), CRP2, NF-IL6; key 
transcription factor concerning the activation 
of APP gene transcription; member of the 
C/EBP subfamily of the basic region leucine 
zipper (bZIP) protein family; constitutive basal 
expression in hepatocytes and HepG2 
cells109b is upregulated in response to IL-1 and 
IL-66b, 39b, 150b 

10 1
0 
cebpd C/EBPδ  CCAAT/enhancer binding protein δ, also: 

NF-IL6β; key transcription factor concerning 
the activation of APP gene transcription; 
member of the C/EBP subfamily of the basic 
region leucine zipper (bZIP) protein family 

11 1
1 
cfos c-Fos  v-Fos Finkel-Biskis-Jinkins osteosarcoma 

virus oncogene homolog; member of the bZIP 
family of transcription factors; early immediate 
(IE) gene product/cellular oncoprotein; leucine 
zipper mediates DNA binding 

                                                
*  Dark grey marking points to species (model outputs) that also act during or effect (are directly regulated in) IL-1  

signalling. 
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12 1
2 
cmyc c-Myc  product of the c-myc gene; helix-loop-helix/ 

leucin-zipper (HLH-LZ) transcription factor; 
critical regulator of cell growth (especially 
G1/S phase transition)73b (and references 
cited therein) 

13 1
3 
crp CRP  C-reactive protein; hepatic acute-phase 

protein (APP) 

14 1
4 
cyt_ptpe PTPεC 0 protein tyrosine phosphatase ε/cytosolic 

isoform, also: cyt-PTPε 

15 1
6 
dum_cebp_saa   dummy species 

16 1
7 
dum_gab1_kin_or_jak1_ 
gab1_mem_p 

  

17 1
8 
dum_gp80_a_il6rc   

18 1
9 
dum_il6rc_p_or_grb2_vav   

19 2
0 
dum_mtorc1_or_pkcd_ 
stat3_ta 

  

20 2
4 
dum_pkcd_camk24_ 
stat1_ta 

  

21  erk12 ERK1/2  extracellular signal-regulated kinase 1/2, also: 
p42/44; cytosolic, serine/threonine-specific 
and proline direct (phosphorylate serine or 
threonine residues in the motif P/LXT/SP) 

22 2
6 
fkhr FKHR  forkhead family of transcription factors 

23 2
7 
gab1_kin  1 yet unknown alternative Gab1 tyrosine protein 

kinase, located at the plasma membrane 

24 2
8 
gab1_mem Gab1m  membrane-bound Gab1 (Grb2-associated 

binder-1); constitutively Grb2-associated84b 
scaffolding adaptor/multisite docking protein 
→ Gab1-PH:PIP3 interaction91b 

25 2
9 
gab1_mem_p (p)Gab1m  Y-phosphorylated Gab1 (membrane-bound); 

(p)Y627 and (p)Y659 (= BTAM/bisphosphoryl 
tyrosine-based activation motif) are required 
for SHP2 binding (as shown in response to 
EGF stimulation29b) 

26 3
0 
gp130m gp130m 1 transmembrane glycoprotein 130, also: 

CD130; non-ligand-binding → universal 
signal-transducing receptor subunit56b, 136b; 
ubiquitously expressed type I cytokine family 
recetor; constitutive JAK-association130b; 
disulfide-linked homodimerisation after 
IL-6:gp80 complex binding99b 
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27 3
1 
gp130s gp130s 0 soluble glycoprotein 130; acts as a gp80s 

antagonist98b (soluble gp130 as well as soluble 
gp80 are both present in human serum53b) 

28 3
2 
gp80m_a gp80m,a  ligand-occupied gp80m (transmembrane 

glycoprotein 80, also: IL-6Rα (IL-6 receptor α-
subunit), CD126)152b; non-signalling but 
specifically ligand (IL-6)-binding; associates 
with gp13056b, 136b 

29 3
3 
gp80s_a gp80s,a  ligand-occupied gp80s (naturally occuring 

soluble IL-6Rα (IL-6 receptor α-subunit), also: 
CD126)152b (for review see [118b]); non-
signalling but specifically ligand (IL-6)-binding; 
associates with gp13056b, 136b and acts 
agonistically86b 

30 3
4 
grb2_sos Grb2:SOS  Grb2:SOS complex: SOS (Son of Sevenless 

→ GDP/GTP exchanger for Ras) constitutively 
associates with Grb2 (growth-factor-receptor-
binding protein 2)38b; Grb2 binds SOS via its 
SH3 domain58b; IL-6 stimulation induces 
complex translocation to the cell membrane 

31 3
5 
gsk3 GSK3  glycogen synthase kinase 3 α/β (species 

refers to both currently known isoforms); 
serine/threonine specific; basally active (for 
review see [79b]); GSK3β was shown to 
support the promoter-specific recruitment of 
NF-κB to the il6- and ccl2-locus (as shown in 
MEFs in response to TNFα134b) 

32 3
6 
il6 IL-6 1 interleukin 6, also: BSF-2, IFNβ-2; pleiotropic 

cytokine (21.5 – 28 kDa); influences antigen-
specific immune responses and inflammatory 
pathways; sources: stimulated monocytes, 
fibroblasts, endothelial cells, smooth muscle 
cells, macrophages, T cells, B lymphocytes, 
granulocytes, etc.; physiological stimuli: IL-1, 
TNF, PDGF, bacterial endotoxins, 
oncostatin M, etc. (for review see [65b]); LPS 
and endotoxin induce IL-6 expression by 
human Kupffer cells (HKC → liver 
macrophages)19b 

33 3
7 
il6rc IL-6 

receptor 
complex 

 functional IL-6 receptor complex 

34 3
8 
il6rc_p   phosphorylated (→ gp130) IL-6 receptor 

complex: (p)YXXQ motifs: Y767, Y814, Y905, 
Y915 → STAT3 (APFR) recruitment/Y905, 
Y915 → STAT1 recruitment40b, 131b; (p)Y759 → 
SHP2 recruitment38b, 117b, 131b 
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35 3
9 
ip3 IP3  inositol 1,4,5-trisphosphate; secondary 

messenger/minor phospholipid 

36 4
0 
ir IR  insulin receptor 

37  irs1_ps IRS1(pS)  S/T-phosphorylated insulin receptor substrat 1 

38 4
1 
irs1_py IRS1(pY)  Y-phosphorylated insulin receptor substrat 1 

39 4
2 
jak1 JAK1 1 Janus kinase 1; constitutively receptor-

associated (→ gp130, for review see [129b]) 
tyrosine kinase; essential for IL-6 signal 
transduction47b; receptor association via 
membrane-proximal, proline-rich box1 and 
box2 motifs139b; JAK1:gp130 interaction via 
FERM1 domain48b; involvement of JAK2 and 
Tyk2 seems cell-type specific130b; auto- and/or 
crossphosphorylation (in trans) causes JAK 
activation on receptor dimerisation in 
response to ligand binding130b 

40 4
3 
junb junB  product of the junB gene; member of the bZIP/ 

AP-1 family of transcription factors; early 
immediate gene (IEG) product/cellular 
oncoprotein; leucine zipper mediates DNA 
binding 

41 4
4 
mekk1 MEKK1  MAP kinase/ERK kinase (MEK) kinase 1; 

serine/threonine-specific 

42 4
5 
mk2 MK2  MAP kinase-activated protein kinase 2, also: 

MAPKAP-K2; serine/threonine-specific 

43 4
6 
mek1 MEK1  mitogen-activated ERK kinase 1, also: MKK1 

(mitogen-activated protein kinase (MAPK) 
kinase 1); MAP2K with dual substrate 
specificity 

44 4
7 
mek4 MEK4  mitogen-activated ERK kinase 4, also: MKK4 

(mitogen-activated protein kinase kinase 4), 
SEK1, JNKK1; MAP2K with dual substrate 
specificity 

45 4
8 
mek6 MEK6  mitogen-activated ERK kinase 6, also: MKK6 

(mitogen-activated protein kinase kinase 6); 
MAP2K with dual substrate specificity 
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46 4
9 
mtor mTOR 1 mammalian target of rapamycin, also: RAFT1 

(rapamycin and FKBP12 target 1), FRAP1 
(FKBP12-rapamycin complex-associated 
protein 1); member of the PIKK (phosphatidyl-
inositol kinase-like kinase) family, serine/ 
threonine-specific; IL-6 induces mTOR-S2481 
autophosphorylation/catalytic activity in 
HepG2 cells within 30 min72b 

47 5
0 
mtorc1 mTORC1  mTOR complex 1: mTOR + mLST8 

(mammalian LST8/G-protein β-subunit like 
protein) + Raptor (regulatory associated 
protein of mTOR) and DEPTOR (DEP 
domains and specific interaction with mTOR) 
+ PRAS40 (proline-rich Akt substrate, 40 kDa) 
as negative regulators; sensitive to FKBP12-
rapamycin 

48 5
1 
mtorc2 mTORC2  mTOR complex 2: mTOR + mLST8 

(mammalian LST8/G-protein β-subunit like 
protein) + PROTOR (protein observed with 
Rictor) + mSIN1 (stress-activated protein 
kinase interacting protein 1) + Rictor 
(rapamycin-insensitive companion of mTOR) + 
DEPTOR (DEP domains and specific 
interaction with mTOR, negative regulator); 
insensitive to FKBP12-rapamycin 

49 5
2 
nfkb NF-κB 0 nuclear factor κB; pleiotropic, heterodimeric 

transcription factor 

50 5
3 
p38 p38 MAPK  p38-mitogen activated protein kinase (MAPK), 

also: p38α, SAPK2 (stress-activated protein 
kinase 2); serine/threonine-specific; functions 
via activation of transcription factors and de 
novo gene transcription, stabilisation of 
mRNA, induction of translation and 
posttranslational modification of numerous 
proteins 

51 5
4 
p70s6k p70S6K  ribosomal protein S6 kinase, 70 kDa, 

polypeptide 1, also: S6K1; serine/threonine-
specific 

52 5
5 
pdk1 PDK1 1 phosphoinositide-dependent kinase 1; serine/ 

threonine-specific 

53 5
6 
phlpp PHLPP 0 PH domain and leucine rich repeat protein 

phosphatase; S473 phosphatase 

54 5
7 
pi3k PI3K  phosphatidylinositol 3'-kinase; p85 adaptor 

subunit associates with phosphorylated Gab1 
via SH2 domain137b, p110 encompasses the 
catalytic activity 
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55 5
8 
pias1 PIAS1 0 PIAS1/3 (protein inhibitor of activated 

STAT1/3); E3-type SUMO protein ligases74b 

56 5
9 
pias3 PIAS3 0 

57 6
2 
pip3 PIP3  phosphatidylinositol(3,4,5)-triphosphate 

58  pkcd PKCδ  protein kinase C δ; serine/threonine-specific 

59 6
3 
plcg PLCγ  phospholipase C γ 

60 6
4 
pro_hgf pro-HGF  matrix-associated, inactive HGF precursor103b 

[HGF: hepatocyte growth factor, also: SF 
(scatter factor); pro-proliferative and pro-
angiogenic growth factor, that furthermore 
stimulates cell motility and supports tissue 
regeneration (→ liver; for review see [13b])] 

61 6
5 
pro_proliferative   IL-6-induced proliferation facilitates liver 

regeneration24b (and references cited therein) 

62 6
6 
pten PTEN 0 phosphatase and tensin homolog, also: 

MMAC1 (mutated in multiple advanced 
cancers 1); lipid tyrosine phosphatase and 
tumor suppressor 

63 6
7 
rac1 Rac1  Ras-related C3 botulinum toxin substrate 1; 

member of the RAS superfamily and Rho 
family; small GTP-binding protein 

64 6
8 
raf1 Raf1  v-raf-1 murine leukemia viral oncogene 

homolog 1; MAP3K, serine/threonine-specific 

65 6
9 
ras Ras  active Ras (v-Ha-ras Harvey rat sarcoma viral 

oncogene homolog, also: transforming protein 
p21); small GTP-binding protein with intrinsic 
GTPase activity (active if GTP-bound!); crucial 
signalling relay of receptor tyrosine kinases 

66 7
0 
ras_gap RasGAP 0 Ras GTPase activating protein, also: RASA1 

(RAS p21 protein activator 1); translocates to 
the plasma membrane upon stimulation1b, 
inactivating Ras by turning on its intrinsic 
GTPase activity44b, 95b 

67 7
1 
ros ROS 0 reactive oxygen species 

68 7
2 
saa SAA  serum amyloid A; hepatic acute-phase protein  

69 7
3 
ship SHIP 0 SH2 domain-containing inositol phosphatase 
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70 7
4 
shp2 SHP2  SH2 domain-containing protein tyrosine phos-

phatase (PTP) 2, also: PTP1D, SHPTP2, Syp, 
PTP2C; catalytic cysteine51b (and references 
cited therein); constitutive association with 
JAK1, JAK2 or Tyk2 (as shown in 
fibrosarcoma cells117b), whereas SH2 domains 
seem to be irrelevant for JAK interaction 
(furthermore JAK1 appears to be a bad SHP2 
substrate)157b; SHP2:gp130 association via 
gp130-(p)Y75938b, 117b, 131b 

71 7
5 
shp2_a SHP2a  fully activated SHP2 (released from the IL-6R 

complex) functions as a phosphatase 

72 7
6 
sirp1a SIRP1α 0 phosphorylated signal regulatory protein 1α, 

also: SHPS-1 (SHP substrate 1); 
transmembrane glycoprotein; recruits key 
protein tyrosine phosphatases (PTPs) to the 
membrane via phosphotyrosines within its 
immunoreceptor tyrosine-based inhibitory 
motif (ITIM), whereas its proline-rich region 
may serve as a binding site for SH3 
domains68b (for review see [20b]); prior 
Y phosphorylation of cytoplasmic SIRP1α by 
so far unknown kinases is required for SHP2 
interaction (for review see [20b]) 

73 7
7 
slim SLIM 0 STAT-interacting LIM protein; nuclear ubiquitin 

E3 ligase 

74 7
8 
socs1 SOCS1  suppressor of cytokine signalling 1/3, also: 

CIS-1/3 (cytokine-inducible SH2 protein 1/3), 
SSI-1/3 (STAT-induced STAT inhibitor 1/3); 
SOCS1 and SOCS3 (not SOCS2 or CIS) 
potently inhibit acute-phase protein gene 
induction upon IL-6 treatment in HepG2 
cells119b; direct JAK1:SOCS3 interaction just 
shown for OSMR signalling in HepG2 cells yet 
(different JAK phosphorylation status might be 
crucial)104b, 135b 

75 7
9 
socs3 SOCS3  

76 8
1 
stat1_py STAT1(pY)  Y-phosphorylated and homodimerised STAT1 

(signal transducer and activator of 
transcription 1) 

77  stat3_py STAT3(pY)  Y-phosphorylated and homodimerised STAT3 
(signal transducer and activator of 
transcription 3; also APRF (acute-phase 
response factor)) 

78 8
2 
stat1_ta STAT1(ta)  transactivated (ta) STAT1/3 (S/Y-

phosphorylated) 

79 8
3 
stat3_ta STAT3(ta)  
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80  tdum_shp2_il6rc_p   timescale dummy species 

81  tdum_shp2_stat1_py   

82  tdum_shp2_stat3_py   

83  tdum_socs1_vav   

84  tdum_socs3_shp2   

85 8
7 
var_app   various hepatic acute-phase plasma protein 

(APP) gene promoters (e.g. Hp (haptoglobin), 
complement C3, hemopexin; as shown for 
human hepatoma cells upon IL-6 
stimulation21b, 158b) 

86 8
8 
vav Vav  'Vav' stands for the sixth letter of the Hebrew 

alphabet; 95 kDa protooncogene product and 
GDP/GTP exchanger (member of the Dbl 
family of guanine nucleotide exchange factors 
(GEFs) for the Rho family of GTP binding 
proteins), exclusively expressed in 
hematopoietic cells and trophoblasts78b 

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2011



Ryll et al.: Large-scale network models of IL-1 and IL-6 signalling and their hepatocellular specification  S71 
 

 Supplements | VIII. Model documentations: IL-6 
 

Tab. S4.2. IL-6 signalling interactions. 

№ Interaction τ c Documentation 

Ligand binding/assembly of the IL-6 receptor complex 

1 → il6* 1 1.0 model input; 

⇒  link to IL-1: IL-1 was shown to induce 
IL-6 expression in human primary FLSs 
(rheumatoid fibroblast-like synoviocytes)94b 

2 il6 = gp80m_a 1 1.0 ligand binding and preformation of the 
transmembrane IL-6:gp80m α-receptor 
complex (for review see [53b]) 

3 !gp130s · il6 = gp80s_a 1 1.0 ligand binding and preformation of the 
soluble IL-6:gp80s α-receptor complex 
(facilitating responses to circulating IL-6, 
soluble gp80 functions in an agonistical 
manner by potentiating biological IL-6 
activity → transsignalling; as reviewed by 
[53b]); by contrast, soluble gp130 
competes with transmembrane gp130 for  
IL-6:gp80s complex binding, acting as an 
antagonist (as shown for IL-6-treated 
HepG2 cells98b, for review see [118b]) 

4 !mk2 · !camk24 = gp130 2 0.8 ⇒ link to IL-1: IL-1-induced MK2 was 
shown to phosphorylate gp130 at S782 
within its cytoplasmic part, triggering IL-6R 
turnover (internalisation + degradation)110b; 
these findings link to previous reports, 
delineating that p38 rapidly inhibits IL-6 
signalling independently of de novo gene 
expression (e.g. SOCS), possibly by 
phosphorylating an IL-6 pathway 
component (most likely target: cytoplasmic 
domain of gp130, but no Y759 
involvement; furthermore JAK1 seems to 
be no direct target), which results in 
impaired, IL-6-induced STAT3-Y 
phosphorylation (initial STAT3 activation 
phase) and ERK activation → inhibition 
correlates with the receptor and targets the 
IL-6R (gp130) and/or IL-6R-associated 
molecules (as shown for IL-6-treated 
HEK293T and HepG2 cells4b, 5b); CaMII/IV 
may also phosphorylate gp130-S782 
(adjacent to a dileucine motif) MAPK-
dependently, supporting receptor 
internalisation (as shown for LIF-treated 
3T3-L1 cells41b) 

                                                
*  Species affecting IL-6 signalling while being regulated by IL-1 (→ crosstalk effects) are highlighted in grey. 
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5a gp80m_a = dum_gp80_a_il6rc 1 1.0 dummy activation 

5b gp80s_a = dum_gp80_a_il6rc 1 1.0 

5 dum_gp80_a_ il6rc · gp130m = il6rc 1 1.0 recruitment of the signalling receptor 
subunits (gp130m) by the ligand-occupied 
α-receptor subunit (gp80s/m,a) leads to their 
homodimerisation and results in formation 
of the functional IL-6 receptor complex (as 
shown for IL-6-treated Hep3B cells99b) 

6a shp2 = tdum_shp2_il6rc_p 2 0.4 timescale dummy activation 

6b shp2_a = tdum_shp2_il6rc_p 2 0.4 

6 !shp2 · !shp2_a · il6rc · jak1 

= il6rc_p 

1 0.8 the IL-6 receptor complex gets Y-
phosphorylated by activated JAK1 (gp130- 
associated, as shown for IL-6-treated 
COS130b and HepG2 cells87b) → generated 
(p)Y759 (binding site for SHP2 and 
SOCS3) functions as a hub for balanced 
signalling (JAK-STAT1/3 vs. Ras/ERK & 
Akt, for review see [34b]); although 
expression of dominant-negative SHP2 
mutants enhances IL-6R 
phosphorylation81b, it has to be checked, 
whether the gp130 subunits function as 
direct SHP2 substrats! 

7a socs3 = tdum_socs3_shp2 2 0.8 timescale dummy activation 

7 il6rc_p · jak1 · !ros · !sirp1a · !socs3 

= shp2 

1 0.8 SHP2 binds to (p)Y759 of the gp130 
subunit (activated IL-6 receptor complex) 
via its SH2 domain (as shown for IL-6- 
treated HepG2 cells38b, 117b) and becomes 
Y-phosphorylated JAK1-dependently117b 
(Y304, Y327, Y542, Y580; as shown for 
COS-1 cells overexpressing JAK1 and 
SHP285b, 157b); additionally, the N-terminal 
SH2 domain of SHP2 interacts 
intramolecularly with (p)Y542 to overcome 
autoinhibition81b, 85b; Y-phosphorylated 
SHP2 leaves the IL-6R complex → 
receptor de-repression (as shown for IL-6-
treated rat hepatoma H-35 cells71b; no Shc 
phosphorylation/participation in response 
to IL-6 → Shc acts OSM-specifically55b); 
up-regulated SOCS3 (not SOCS1!) 
competitively interacts with gp130-(p)Y759 
and SHP2-(p)Y542, blocking the SHP2 
receptor binding and/or coupling of 
Grb2:SOS, which might modulate the IL-6 
induced MAPK activity81b → receptor 
desensitisation (SOCS1 and SOCS3 (not 
SOCS2 or CIS) potently inhibit 
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 acute-phase protein gene induction upon 
IL-6 treatment in HepG2 cells119b); 
SHP2:SIRP1α interaction in response to 
IL-6 (30 min post stimulation of MEFs) 
limits SHP2 phosphorylation/activation127b; 

⇒  link to IL-1: ROS facilitate oxidative 
inhibition of SHP2 (→ protein tyrosine 
phosphatase), given that its catalytic 
cysteine is extremely susceptible to 
oxidation (enhanced, ROS-mediated 
STAT3 activity due to SHP2 inactivation in 
the absence of regulatory NF-κB activity 
within hepatic liver tumourigenesis51b, 93b 
(and references cited therein)) 

8 il6rc_p = grb2_sos 2 0.4 proposes for a SHP2-independent71b Ras 
activation by Grb2:SOS due to direct 
receptor-(p)Y association; but: just 
(p)EGFR:Grb2 interaction (as shown for 
Vero cells and MEFs95b) proved so far; 
thus, the interaction is regarded as 
secondary pending further notice! 

9 shp2 = grb2_sos 1 0.4 Grb2 binds to Y304- and/or Y546-
phosphorylated SHP2 (as shown for 
COS-1 cells overexpressing JAKs157b) 
through its SH2 domain and constitutively 
links effector SOS via its SH3 domains38b 

STAT1/3 activation 

10a shp2 = tdum_shp2_stat1_py 2 0.4 timescale dummy activation 

10b shp2_a = tdum_shp2_stat1_py 2 0.4 

10 !cyt_ptpe · !shp2 · !shp2_a · il6rc_p · 
jak1 = stat1_py 

1 0.6 STAT1 binds to (p)Y905 or (p)Y915 of the 
IL-6 receptor complex subunit gp130 via its 
SH2 domains40b, 54b (concerning the context 
of IL-6 signalling, STAT1 seems only 
prominent in the absence of STAT382b, 83b), 
followed by subsequent STAT1-Y701 
phosphorylation (as shown for IL-6-treated 
HepG2 cells142b) by JAK1, dissociation 
from the receptor, STAT1-
homodimerisation/activation, and nuclear 
import66b (for review see [34b]); weak 
STAT1 induction upon IL-6 treatment of 
HepG2 cells strengthens the STAT3 
predominance83b; cyt-PTPε negatively 
regulates the onset of STAT1-Y 
phosphorylation (as shown for IL6-treated 
murine M1 myeloid cells141b); SHP2 may 
act as a dual-specificity protein 
phosphatase on STAT1, accumulating in 
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 the nucleus and dephosphorylating 
(p)Y701 and (p)S727 (→ negative 
regulation; as shown for A431 cells upon 
EGF or IFN stimulation149b); whether 
Gab1:SHP2 interaction (explicit activation) 
is indispensable, has to be worked out! 

11a shp2 = tdum_shp2_stat3_py 2 0.4 timescale dummy activation 

11b shp2_a = tdum_shp2_stat3_py 2 0.4 

11 !cyt_ptpe · !shp2 · !shp2_a · il6rc_p · 
jak1 = stat3_py 

1 0.6 STAT3 binds to (p)Y767, (p)Y814, (p)Y905 
or (p)Y915 of the IL-6 receptor complex 
subunit gp130 via its SH2 domains40b, 54b, 
followed by subsequent STAT3-Y705 
phosphorylation (2 min after IL-6 
stimulation of HepG2 cells; prerequisite for 
S727 phosphorylation by PKCδ123b, 142b) by 
JAK1, dissociation from the receptor, 
STAT3 homodimerisation via SH2 
domains/activation, nuclear import, and 
DNA binding66b (for review see [34b]); 
cyt-PTPε negatively regulates the onset of 
STAT3-Y phosphorylation (as shown for 
IL6-treated murine M1 myeloid cells141b); 
SHP2 may dephosphorylate/inactivate 
STAT3 → down-regulation of acute-phase 
proteins117b (dual-specifity phosphatase 
activity just proved for the SHP2:STAT1 
interaction in IFN-treated HEK293T and 
EGF-treated A431 cells so far149b); whether 
Gab1:SHP2 interaction (explicit/strong 
activation) is indispensable, has to be 
worked out! 

12a pkcd * camk24  

= dum_pkcd_camk24_stat1_ta 

1 0.4 dummy activation 

12 dum_pkcd_camk24_stat1_ta ·   
stat1_py · !pias1 · !slim = stat1_ta 

1 0.6 additional, PKCδ-induced STAT1-S727 
phosphorylation (as shown for IFNα- 
treated Molt-4 and U-266 cells143b) seems 
essential for maximal transactivation 
(relevant for assembly of active 
transcription complexes147b, 146b), but: no 
detectable PKCδ:STAT1 interaction upon 
IL-6 treatment of HepG2, PC12 or A431 
cells63b; alternatively: CaMKII was shown to 
phosphorylate STAT1-S727 upon IFN 
stimulation of NIH 3T3 cells101b; ligand-
dependent, specific PIAS1:STAT1(p)Y701 
association upon IL-6 treatment (detectable 
within 15 min) of HepG2 cells inhibits DNA 
binding activity of STAT183b, possilbly by 
preventing its dimerisation, causing 
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 repression of STAT1 signalling (for review 
see [34b]); PIAS-mediated sumorylation113b 
may lead to sequestration of STATs to 
subnuclear structures (as shown for Wnt-
induced LEF1 (lymphoid enhancer factor 1) 
and PIASy115b); nuclear SLIM promotes the 
ubiquitination/proteasome-dependent 
degradation of STAT1/4 and impairs the 
Y phosphorylation of STAT4 (as shown for 
IFNα-treated HEK293T cells138b, for review 
see [118b]); general relevance of SLIM for 
hepatic IL-6 signalling has to be checked! 

13 stat1_ta → 1 0.6 model output 

14a mtorc1 * pkcd  

= dum_mtorc1_or_pkcd_stat3_ta 

1 1.0 dummy activation 

14 dum_mtorc1_or_pkcd_stat3_ta · 
!pias3 · stat3_py · !slim = stat3_ta 

1 1.0 additional nuclear (!), PKCδ-63b (maximal 
between 10 – 30 min in HepG2 cells123b) 
and/or mTOR-induced (rapamycin-
sensitive, as shown for IL-6-treated HepG2 
cells72b) STAT3-S727 phosphorylation 
leads to maximal transactivation (relevant 
for assembly of active transcription 
complexes147b, 146b); ligand-dependent, 
specific PIAS3:STAT3 interaction upon IL-6 
treatment of HepG2 (and M1 or MCF7) 
cells (detectable within 10 min) inhibits 
DNA binding activity of STAT3, possilbly by 
preventing its dimerisation26b (no 
PIAS3:STAT1 interaction, for review see 
[34b]); PIAS-mediated sumorylation113b 
may lead to sequestration of STATs to 
subnuclear structures (as shown for Wnt-
induced LEF1 (lymphoid enhancer factor 1) 
and PIASy115b); nuclear SLIM promotes the 
ubiquitination/proteasome-dependent 
degradation of STAT1/4 and impairs the 
Y phosphorylation of STAT4 (as shown in 
IFNα-treated HEK293T cells138b, for review 
see [118b]; presumably, not shown for 
STAT3 yet!); general relevance of SLIM for 
hepatic IL-6 signalling has to be checked! 

15 stat3_ta = socs1 1 1.0 STAT3 targets SOCS genes upon IL-6 
stimulation → transient SOCS1 expression 
(as shown for IL-6-treated M1 cells102b) 
detectable within 20 min upon IL-6 
treatment/decline to basal level within 4 h 
in murine liver or M1 cells133b 

16 stat3_ta * p38 * erk12 = socs3 1 1.0 STAT3 targets SOCS genes upon IL-6 
stimulation (as shown for SOCS3 in IL-6- 
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 treated HepG2 cells72b) → transient 
SOCS3 induction upon IL-6 stimulation 
detectable within 20 min upon IL-6 
treatment of HepG2 cells81b, 125b/decline to 
basal level within 8 h in murine liver133b; 
p38 essentially conduces to SOCS3 mRNA 
expression upon IL-6 treatment of HepG2 
cells15b, possibly by mRNA stabilisation 
and/or regulation of transcriptional co-
factors32b; ERK1/2 inhibit STAT3 activity by 
contributing to SOCS3 gene expression in 
HepG2 cells upon IL-6 treatment possibly 
also by regulation of transcriptional co-
factors like Elk-1 and/or TCF124b, 142b; 
whether ERK1/2 act synergistically with or 
alternatively to p38 and need STAT3 
involvement has yet to be concerned! 

17 nfkb = socs3 1 1.0 ⇒ link to IL-1: although not causing 
SOCS3 gene expression, IL-1 stabilises 
IL-6-induced SOCS3 mRNA NF-κB-
dependently, possibly via secondary 
effector proteins (as shown for IL-(1+6)-
treated HepG2 cells155b) 

18 !socs1 · !socs3 · !shp2 · !shp2_a 

= jak1 

2 0.6 SOCS1 and SOCS3 (not SOCS2 or CIS) 
potently inhibit acute-phase protein gene 
induction upon IL-6 treatment in HepG2 
cells120b; SOCS1 (or SOCS3 with markedly 
lower affinity/prefers gp130 association!) 
interacts with JAK1-(p)Y via its SH2 
domain, leading to close proximity of its 
KIR (kinase inhibitory region) domain with 
the substrate binding site of the JAK1 KD 
(kinase domain), which in turn decreases 
catalytic JAK1 activity (as shown for 
HEK293T cells overexpressing SOCS1 
and JAK1104b; SOCS1:JAK2-(p)Y1007 
interaction was demonstrated by [33b, 156b], 
for review see [77b]); no SOCS1:gp130-
(p)Y759 interaction (as shown for Epo-
treated HepG2 cells120b); SHP2 may 
directly act as a phosphatase on JAK1, 
exerting its inhibitory function on IL-6 
signalling independently from receptor-
bound SOCS3, supporting early signal 
modulation (as shown for IL-6- treated rat 
hepatoma H-35 cells70b and IL-5-treated 
COS-7 cells81b, for review see [34b, 53b]); 
but: phosphorylated JAK1 seems to be no 
good SHP2 substrate (as shown by 
overexpression studies in COS-1 cells157b) 
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19 stat3_ta = cfos 1 1.0 IL-6 induces c-Fos- (as shown for murine 
hepatocytes and HepG2 cells82b, 154b) and 
junB- (as shown for HepG2 cells and 
murine hepatocytes27b, 82b) gene expression 
via STAT3  

20 stat3_ta = junb 1 1.0 

21 junb → 1 1.0 model output 

22 stat3_ta = cmyc 1 1.0 STAT3 rapidly interacts with the c-myc 
gene promoter in response to IL-6 and up-
regulates c-Myc gene expression in HepG2 
cells73b 

23 cmyc → 1 1.0 model output 

24 stat3_ta * p38 = cebpb 1 0.8 C/EBPβ is constitutively expressed in adult 
hepatocytes and appears to be activated 
mainly by posttranslational modifications in 
response to IL-6 (for review see [109b]); 
therefore p38 seems essential (as shown 
for C/EBPβ-triggered IL-1β expression by 
RAW264.7 cells (murine macrophages) in 
response to LPS9b); STAT3 (not STAT1!) 
contributes to the up-regulation of C/EBPβ 
expression by murine hepatocytes and 
human HepG2 cells within 30 min (peaks 
at 6 h) in response to IL-6; this gene 
expression is supported by a yet unknown 
protein complex (acting CREB-
independently) at the CRE-like elements of 
the c/ebpβ promoter105b (for review see 
[121b]) 

25 stat3_ta = cebpd 1 1.0 STAT3 (not STAT1!) also triggers the IL-6-
induced transcriptional activation of the 
c/ebpδ gene in human hepatoma cells 
(detectable within 30 min) by interacting 
with the APR element (APRE) of the 
promoter region (therefore, SP1 and 
STAT3 function cooperatively)21b, 151b 

26 !cebpb = pro_proliferative 1 0.6 C/EBPβ homodimers are assumed to act 
anti-proliferative (whereas C/EBPγ may 
neutralise this growth-inhibitory effect by 
heterodimerisation)80b, which might be 
confirmed by a blocked G1/S phase 
transition in HepG2 cells overexpressing 
C/EBPβ16b 
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27 cebpb = var_app 1 1.0 C/EBPδ is the predominant IL-6-induced 
protein interacting with C/EBP sites in the 
promoters for complement C3, hemopexin, 
and haptoglobin in hepatocytes21b 
(transcriptional regulation/induction of 
acute-phase protein genes by STAT3 as 
an up-stream effector was proven52b (as 
shown for HepG2 cells145b)) 

28 cebpd = var_app 1 1.0 

29 var_app → 1 1.0 model output 

30a cebpb * cebpd = dum_cebp_saa 1 1.0 dummy activation 

30 dum_cebp_saa · stat3_ta · nfkb 

= saa 

1 1.0 IL-6 induces SAA2 (serum amyloid A2, 
APP) gene expression via C/EBPβ 
and/or -δ in HepG2 cells150b; STAT3 
heterodimerises with NF-κB p65 in 
response to IL-(1+6) stimulation of HepG2 
cells, supporting the additional recruitment 
of co-activator p300 and coordinated 
interaction with C/EBPβ at the saa gene 
promoter50b; 

⇒  link to IL-1: IL-1 may act as a ”gate 
keeper”, stressing a certain set of APPs, 
though simultaneously supressing another 
one7b 

31 saa → 1 1.0 model output 

32 cfos · stat3_ta · !nfkb = crp 1 1.0 ⇒  link to IL-1: the transcriptional complex 
formation of c-Fos:STAT3:HNF-1α 
(hepatocyte nuclear factor 1α) 
synergistically induces CRP gene 
expression in response to IL-(1+6) 
stimulation, whereas NF-κB seems to block 
the early induction phase (as shown in 
Hep3B cells106b); contradictorily, IL-1-
induced NF-κB (p50:p65) was shown to act 
synergistically with both C/EBPβ and 
STAT3 to mediate CRP gene expression in 
Hep3B cells and therefore enhances the 
effects of IL-6 on CRP production2b 

33 crp → 1 1.0 model output 

34 stat3_ta · !nfkb = a2m_gfbg 1 1.0 ⇒  link to IL-1: IL-1 may act as a ”gate 
keeper”, stressing a certain set of APPs, 
though simultaneously supressing another 
one7b: NF-κB (p50:p65) competes with 
STAT3 for α2m promoter binding by 
counteracting DNA binding of STAT3 at 
overlapping STAT3/NF-κB binding sites, 
inhibiting α2M gene expression in 
response to IL-(1+6) stimulation of HepG2 
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 cells14b; STAT3 associates with CDK9 
(cyclin-dependent kinase 9) and triggers 
γFBG expression in response to IL-6 (as 
shown for HepG2 cells62b); IL-1-induced 
NF-κB activation suppresses γFBG 
expression by HepG2 cells and human 
primary hepatocytes possibly by inhibiting 
late phase STAT3 activation7b 

35 a2m_gfbg → 1 1.0 model output 

Gab1 recruitment/SHP2 activation 

36 erk12 · pip3 = gab1_mem 1 0.8 Gab1 translocation to the plasma 
membrane: Gab1-S551 phosphorylation by 
activated ERK1/2 relieves the block of the 
Gab1 PH (pleckstrin homology) domain 
and targets it to membrane-bound 
PIP3

91b, 111b (as shown for IL-6- treated 
HEK293T cells35b); Gab1:(p)ERK2 
interaction probably via MBD (Met-binding 
domain; as shown for HGF-treated murine 
IMCD3 cells114b) 

37 grb2_sos = gab1_mem 2 0.4 Gab1 constitutively associates with Grb2 
via two special Grb2 binding sites and SH3 
domains of Grb2 (as shown for HEK293T 
cells overexpressing EGFR84b, for review 
see [44b]), likely facilitating its receptor 
recruitment; so far regarded as secondary 
due to outstanding relevance for Gab1 
membrane translocation!  

38a gab1_kin = dum_gab1_kin_or_jak1_ 

gab1_mem_p 

1 1.0 dummy activation 

38b jak1 = dum_gab1_kin_or_jak1_ 

gab1_mem_p 

2 0.4 

38 dum_gab1_kin_or_jak1_ 

gab1_mem_p · gab1_mem 

= gab1_mem_p 

1 0.6 Gab1 (membrane-bound) gets Y-
phosphorylated within 5 min upon IL-6 
stimulation (as shown for HepG2 cells137b); 
involvement of receptor-associated JAK1 
or yet unknown alternative intermediate 
tyrosine protein kinases44b has to be 
checked; hence, the relating influence of 
JAK1 is assumed to be secondary until 
further notice! 

39 gab1_mem_p · !ros · shp2 · !sirp1a 

= shp2_a 

1 0.6 SHP2:Gab1 interaction targets SHP2 to the 
membrane and relieves its basal inhibition, 
leading to strong activation85b, 108b (as 
shown by overexpression studies in COS-7 
cells30b, for review see [44b]); 
Gab1-(p)Y627 and (p)Y659 (= BTAM/ 
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 bisphosphoryl tyrosine-based activation 
motif) required for SHP2 binding (as shown 
for EGF-treated COS-7 cells29b); 
SHP2:SIRP1α association in response to 
IL-6 (30 min post stimulation of MEFs) 
limits SHP2 phosphorylation/activation127b; 

⇒  link to IL-1: ROS facilitate oxidative 
inhibition of SHP2 (protein tyrosine 
phosphatase), given that its catalytic 
cysteine is extremely susceptible to 
oxidation (enhanced, ROS-mediated 
STAT3 activity due to SHP2 inactivation in 
the absence of regulatory NF-κB activity 
within hepatic liver tumourigenesis51b, 93b 
(and references cited therein)) 

40 gab1_mem_p · !shp2_a = ras_gap 2 0.4 RasGAP:(p)Gab1 (membrane-bound) 
interaction via Gab1-(p)Y317; activated 
SHP2 dephosphorylates RasGAP binding 
sites to disengage it from Ras-activating 
Gab1 complexes (as shown for EGF-
treated Vero cells (monkey kidney cell line) 
and MEFs95b) 

41 gab1_mem _p = plcg 1 0.4 Y-phosphorylated Gab1 (Y307, Y373, 
Y407) binds and activates PLCγ (as shown 
for HGF-treated HEK293 cells45b); but: 
relevance for hepatic IL-6 signalling has to 
be checked! 

MAPK signalling 

42 grb2_sos · !ras_gap = ras 1 0.4 SOS (Grb2-associated) activates Ras via 
GDP/GTP exchange (for review see           
[69b]), whereas RasGAP inhibits Ras 
activity by turning on its intrinsic GTPase 
activity (as shown for EGF-treated Vero 
cells95b, for review see [44b]) 

43 ras = raf1 1 0.8 GTP-Ras activates Raf1 (as shown in 
HeLa cells in response to IFNβ and OSM 
(oncostatin M)132b or IL-6-treated AF-10 
cells (human B-cell line)76b); conformational 
changes of Raf1 upon GTP-Ras binding 
may serve to expose its kinase domain (for 
review see [97b]) 

44 raf1 = mek1 1 0.8 Raf1 phosphorylates/activates MEK1 in 
response to IL-6 stimulation (as shown for 
AF-10 cells76b) 

45 mek1 = erk12 1 0.4 Ras-dependent MEK1/ERK2 activation via 
the membrane-tagged Gab1:SHP2 
complex (as shown for COS-7 cells 
overexpressing Gab1 and MEK130b); IL-6 
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 induces ERK1/2 phosphorylation (ERK1: 
T202/Y204; ERK2: T185/Y187)/activation 
(as shown for HepG2 cells within 
15 min55b) in a Gab1- and SHP2-
dependent manner137b; but: relevance of 
MEK1 as an upstream kinase of ERK1/2 
for hepatic IL-6 signalling has to be 
checked! 

46a socs1 = tdum_socs1_vav 2 0.4 timescale dummy activation 

46b il6rc _p * grb2_sos 

= dum_il6rc_p_or_grb2_vav 

1 0.8 dummy activation 

46 dum_il6rc_p_or_grb2_vav · !socs1  

= vav 

1 0.6 gp130:Vav interaction via the membrane-
distal region of gp130 and/or Vav:Grb2 
association regardless of IL-6 stimulation 
(as shown for the human myeloma B-cell 
line U266 upon IL-6 treatment78b); transient 
Vav-Y phosphorylation (maximal after 
10 min in HepG2 cells) in response to 
IL-678b, 122b; SOCS1 binds and may target 
Vav to ubiquitin-mediated protein 
degradation (as shown for COS-7 cells 
overexpressing Vav and SOCS131b) 

47 vav = rac1 1 1.0 transient Vav:Rac1 association (detectable 
within 5 min upon IL-6 stimulation of 
HepG2 cells) leads to Vav-catalysed 
GDP/GTP exchange on Rac1 and 
subsequent release of active GTP-
Rac1122b; pre-existing Vav-Y 
phosphorylation seems essential for Rac1 
activation/GTP-Rac1 release (complete 
after 20 min in HepG2 cells) rather than for 
Vav:Rac1 interaction28b, 122b 

48 rac1 = mekk1 1 1.0 MEKK1 associates with GTP-Rac136b and 
becomes activated upon IL-6 stimulation of 
HepG2 cells122b 

49 mekk1 = mek4 1 1.0 IL-6 induces MEK4-T223 phosphorylation/ 
activation by MEKK1 within 5 min (maximal 
after 10 min) in HepG2 cells123b, 122b 
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50 mek4 = pkcd 1 1.0 MEK4 phosphorylates PKCδ at T505 (only 
detectable in nuclear fractions; maximal 
between 5 – 30 min in HepG2 cells) IL-6-
dependently, leading to its release from the 
MEK4 complex (after 15 min) and 
activation (neither detectable JNK1 
activation nor JNK1:MEK4 association in 
IL-6-treated HepG2 cells)123b; but: IL-6 was 
shown to increase JNK-T183/Y185 
phosphorylation within 30 min up to 4 h in 
HUVECs (human umbilical vein endothelial 
cells)8b 

51 il6rc_p = mek6 1 1.0 IL-6 induces p38 activation via 
MEK6122b, 158b (as shown for HepG2 cells, 
detectable after 1 min15b); no detectable 
JNK activation upon IL-6 treatment of 
HepG2 cells15b, 123b! 

52 mek6 = p38 1 1.0 MEK6 activates p38 upon IL-6 treatment of 
HepG2 cells15b (IL-6-induced p38-
T180/Y182 phosphorylation detectable 
within 5 min as shown for human KMCH 
(combined hepatocellular and cholangio-
carcinoma) cells92b) 

53 p38 = mk2 1 1.0 p38 interacts with and activates nuclear 
MK2 by phosphorylating T222, S272, and 
T334 in response to IL-6 (and IL-1), 
causing its nuclear export3b, 10b, 11b, 148b (as 
shown for IL-6-treated HepG2 cells158b) 

Ca2+ signalling 

54 plcg = ip3 1 0.4 PLCγ hydrolyses PIP2, generating IP3 and 
DAG (diacylglycerol)89b; but: relevance for 
hepatic IL-6 signalling has to be checked! 

55 ip3 = ca 1 0.4 IP3 induces Ca2+ release from the 
endoplasmatic reticulum (ER) via IP3 
receptors (for review see [60b]), resulting in 
an intracellular Ca2+ increase (soluble gp80 
was shown to induce a Ca2+ flux in human 
dermal foreskin fibroblasts128b); but: 
relevance for hepatic IL-6 signalling has to 
be checked! 

56 ca = cam_ca 1 0.4 CaM:Ca2+ interaction leads to local 
conformational changes and activation of 
CaM (for review see [60b]); but: relevance 
for hepatic IL-6 signalling has to be 
checked! 
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57 cam_ca = camk24 1 0.4 Ca2+:CaM complex association relieves the 
intramolecular autoinhibition of CaMK (for 
review see [60b]); but: relevance for 
hepatic IL-6 signalling has to be checked! 

PI3K/Akt signalling 

58 ras = pi3k 1 0.4 GTP-Ras:PI3K interaction through the 
catalytic (PI3K) subunit p110 may lead to 
PI3K activation (as shown for EGF- and 
NGF-treated PC-12 cells (rat 
phaeochromocytoma cell line) or by 
overexpression studies in COS cells112b); 
relevance for hepatic IL-6 signalling has to 
be checked! 

59 gab1_mem_p · !shp2_a = pi3k 2 0.8 basal PI3K activity ensures the initial 
membrane recruitment of Gab1 in 
response to IL-6 (as shown for HEK293T 
cells35b); IL-6 induces (p)Gab1:PI3K 
complex formation (likely via PI3K subunit 
p85) in HepG2 cells, whereas 
(p)Gab1:SHP2:PI3K and SHP2:gp130 
complexes are distinct137b (three potential 
p85 binding sites on Gab1: (p)Y447, Y472, 
Y589; as shown for NGF-treated PC-12 
cells59b); (p)Gab1:PI3K association 
amplifies local PIP3 accumulation, 
increasing Gab1 recruitment to the plasma 
membrane and its tyrosyl phosphorylation, 
which in turn promotes further PI3K activity 
(→ positive feedback loop, as shown for 
IL-6-treated HEK293T cells35b); catalytically 
active SHP2 dephosphorylates PI3K 
binding sites on Gab1, down-regulating the 
Gab1:p85 interaction (as shown for EGF-
treated NIH 3T3 and HEK293 cells159b) 

60 pi3k · !pten = pip3 1 1.0 as established, PI3K catalyses the 
phosphorylation of PIP2 (phosphatidyl-
inositol(4,5)-bisphosphate) to generate 
PIP3 (for review see [144b]); PTEN (PIP3 
phosphatase) reverses the reaction88b 

61 mtor = mtorc1 1 1.0 mTOR acts within two functionally distinct 
protein complexes: mTORC1 vs. mTORC2 
(for review see [116b]) 62 mtor = mtorc2 1 1.0 

63 mtorc2 · pdk1 · pip3 · !phlpp · !ship 

= akt 

1 0.8 Akt and PDK1 bind to PIP3 at the plasma 
membrane, leading to PDK1-mediated 
T308 phosphorylation within the activation 
loop of Akt; complete Akt activation upon 
S473 phosphorylation by mTORC2 (as 
shown for IL-6-treated HepG2 cells25b); 
PI3K/Akt activation in response to IL-6 
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stimulation seems strictly cell-type specific; 
PHLPP inactivates Akt through 
dephosphorylation of (p)S473 (for review 
see [90b]); SHIP inhibits Akt membrane 
translocation23b; but: relevance of PHLPP 
and SHIP for hepatic IL-6 signalling has to 
be checked! 

64 !akt = bad 1 0.8 activated Akt phosphorylates/inactivates 
BAD upon IL-6 stimulation, leading to 
Bcl-xL- and Bcl-2- (suppressors of 
apoptosis) release and activation24b (as 
shown for human multiple myeloma cells 
(MM.1S)57b) 

65 !akt = casp9 1 0.8 activated Akt blocks caspase 9 cleavage/ 
protease activity through 
phosphorylation22b upon IL-6 stimulation 
(as shown for human multiple myeloma 
cells (MM.1S)57b) 

66 !akt = gsk3 1 0.8 activated Akt phosphorylates (possibly at 
regulatory S979b)/inactivates GSK3β107b 
upon IL-6 stimulation (as shown for human 
multiple myeloma (MM.1S) cells57b) 

67 !akt = fkhr 1 0.8 activated Akt phosphorylates/negatively 
regulates FKHR upon IL-6 stimulation (as 
shown for human multiple myeloma 
(MM.1S) cells57b), possibly promoting its 
nuclear export12b 

68 akt * erk12 * mtorc1 = p70s6k 1 0.8 mTOR mediates p70S6K-T389 (as shown 
for AF-10 MM (detectable within 15 min up 
to 1 h)126b and HepG2 cells (within 15 min 
up to 2.5 h)72b), S411, and T421/S424 
phosphorylation (as shown for AF-10 MM 
cells within 15 min126b) and its catalytic 
activation in response to IL-6 in a 
rapamycin-sensitive manner; Akt and 
ERK1/2 may additively or synergistically 
contribute to sequential p70S6K 
phosphorylation/activation (as shown for 
IL-6-treated AF-10 MM cells126b: ERK1/2 → 
p70S6K-T421/S424; ERK1/2 and/or Akt → 
S411; Akt → T389) 

Anti-apoptotic and pro-proliferative effects 

69 !bad · !casp9 · !gsk3 · stat3_ta  

= anti_apoptotic 

1 1.0 inhibition of BAD, Casp9, and GSK3β 
strengthens the hepatoprotective nature of 
IL-6: BAD generally promotes cell death 
through heterodimerisation with the 
survival proteins Bcl-2 and Bcl-xL, leading 
to their inactivation153b; Casp9 acts as an 
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 initiator and effector of apoptosis22b; 
GSK3β may negatively regulate the activity 
of transcription factors, finally leading to 
apoptosis (for review see [37b]); IL-6 
establishes and maintains an adequate, 
anti-apoptotic level of FLIP, Bcl-2 and 
Bcl-xL (suppressors of apoptosis) in murine 
primary hepatocytes and Hep3B cells, 
therefore PI3K/Akt and STAT3 pathways 
seem to act cooperatively24b, 38b, 49b, 75b; 
STAT3 acts as a key regulator of human 
liver tumourigenesis (HCC/hepatocellular 
carcinoma) by suppressing apoptosis and 
stressing proliferation during early tumour 
development25b, 51b (and references cited 
therein); but: relevances of BAD, Casp9, 
and GSK3β for anti-apoptotic effects 
concerning hepatic IL-6 signalling have to 
be checked! 

70 anti_apoptotic → 1 1.0 model output  

71 camk24 = pro_proliferative 1 0.4 regulatory phosphorylation events 
mediated by specific kinases (CAM 
kinase II and/or the Ras-Raf-MEK-ERK-
p90RSK cascade; for review see [18b]) 
seem to counteract C/EBPβ-mediated 
growth arrest (as shown for TGFα-treated 
HepG2 cells17b); but: relevance for hepatic 
IL-6 signalling has to be checked! 

72 erk12 = pro_proliferative 1 0.6 

73 !fkhr = pro_proliferative 1 0.8 FKHR block G1/S phase 
transition/proliferation through p27KIP1 up-
regulation (down-regulation of p27KIP1 
leads to G1/S phase transition, supporting 
cell cycle progresssion and proliferation (as 
shown for IL-6-treated human multiple 
myeloma (MM.1S) cells57b) 

74 p70s6k = pro_proliferative 1 0.8 p70S6K promotes cell cycle progression/ 
proliferation inter alia by inhibitory 
phosphorylation of the 4E-BP1 translational 
represssor, subsequent eIF-4E initiation 
factor release, and assembly of a 
translation initiation complex (as shown for 
IL- 6-treated AF-10 MM cells126b) 

75 stat3_ta = pro_proliferative 1 1.0 STAT3 promotes IL-6 induced cell cycle 
progression and cell proliferation during 
liver regeneration (as shown in murine 
liver82b) and seems to act as a key 
regulator of human liver tumourigenesis 
(HCC/hepatocellular carcinoma) by 
suppressing apoptosis and stressing 
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 proliferation during early tumour 
development25b, 51b (and references cited 
therein) 

76 pro_proliferative → 1 1.0 model output 

Effects on insulin signalling 

77 pkcd = irs1_ps  1 0.4 PKCδ was shown to mediate IRS1-S24 
phosphorylation (within the IRS1 PH 
domain), interfering with PIP2 binding (as 
shown for PMA-treated H4IIE rat hepatoma 
cells42b) and seems to contribute to 
inhibitory IRS1-S312, S636/639, and S616 
phosphorylation possibly by activating 
downstream S/T kinases (as shown for 
TNFα-treated H4IIE rat hepatoma cells43b); 
but: relevance for hepatic IL-6 signalling 
has to be checked!  

78 erk12 = irs1_ps 1 0.8 ERK1/2 may exert their negative effect on 
IRS1 by phosphorylating S307 (for review 
see [46b, 140b]) or impairing IR-mediated 
IRS1-Y phosphorylation by inhibitory IRS1-
S616 phosphorylation (as shown for IL-6-
treated HUVECs (human umbilical vein 
endothelial cells)8b) 

79 !irs1_ps · !shp2 · !shp2_a = irs1_py 1 1.0 as generally accepted, IRS1-S/T 
phosphorylation interferes with subsequent 
insulin-stimulated and IR-mediated 
Y phosphorylation of IRS161b; SHP2 
(phosphorylation/activation state has yet to 
be analysed!) likely down-regulates insulin 
signalling by dephosphorylating tyrosine 
residues on IRS1 (IRS1:SHP2 interaction 
via IRS1-(p)Y1172 and (p)Y1222, as 
shown for insulin-treated CHO cells100b); 
but: relevance for hepatic IL-6 signalling 
has to be checked! 

80 irs1_py → 1 1.0 model output  

81 !socs1 · !socs3 = ir 1 1.0 IL-6-induced SOCS3 negatively regulates 
the hepatic insulin receptor (IR) in HepG2 
cells and murine liver, possibly by 
antagonising receptor autophosphorylation 
(high SOCS3 concentration, → KIR 
domain) or competing with IRS (insulin 
receptor substrat) for receptor association 
(lower SOCS3 concentration72b, 125b) (and 
references cited therein); SOCS1 requires 
insulin for maximal IR affinity and does not 
affect receptor autophosphorylation (as 
shown for insulin-treated HepG2 cells96b) 
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82 ir → 1 1.0 model output  

Effects on HGF signalling 

83 cebpb * cebpd  

= pro_hgf 

1 0.8 C/EBPβ and/or -δ seem to elicit hgf 
promoter activation and function as 
initiators of transcription, up-regulating 
HGF gene expression (as shown for IL-6- 
or TNFα-treated murine NIH 3T3 
fibroblasts64b); but: relevance for hepatic 
IL-6 signalling has to be checked! 

84 pro_hgf → 1 0.8 model output 
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