Fluorescent Labeling Agents Change Binding Profiles of Glycan-Binding Proteins

SUPPLEMENTARY INFOPMATION:

Structural drawings of 24 oligosaccharides (Figure S1). Structures of 24 oligosaccharides as listed in Table 1 are drawn in Figure S1, including that of a biotin-conjugated linker.

ECA-glycan binding profile (Figure S2). The non-labeled protein binds primarily to Gal β 1-4Glc β (OS-3), Gal β 1-4GlcNAc β (OS-5), Gal β 1-4GlcNAc δ S β (OS-6), and Gal β 1-3GlcNAc β (OS-7)^{1, 2}. FITC-labeling enhances the affinity of ECA binding to Gal β 1-4Glc β (OS-3) while reducing the affinity to Gal β 1-3GlcNAc β (OS-7). In addition, FITC-ECA binds to Gal β -biotin (OS-1) while the non-labeled lectin does not.

PNA-glycan binding profile (Figure S3). The non-labeled lectin binds to 2 out of 24 glycans. The binding dissociation constants of the non-labeled lectin to Gal β 1-4Glc β (OS-1) and Gal β 1-3GalNAc β (OS-9) are 3 μ M and 300 nM, respectively³. In comparison, FITC-labeled PNA only binds to Gal β 1-3GalNAc β (OS-9) with a higher affinity.

MAA-glycan binding profiles (Figure S4). Non-labeled lectin primarily binds to 4 α 2-3linked sialyl lactosides or α 2-3-linked sialyl type II glycans (OS-11 through OS-14)^{4, 5} with dissociation constants around 100 nM or lower. Additionally, it also binds to Gal β 1-4Glc β (OS-3) and Gal β 1-4GlcNAc**6S** β (OS-6)⁶. Upon labeling with FITC, the affinity of MAA binding to these four α 2-3-linked sialosides (OS-11 through OS-14) and Gal β 1-4Glc β decreases substantially, by as much as 2 orders of magnitudes. In addition, FITC-MAA binds to Gal β 1-4GlcNAc β (OS-5) instead of Gal β 1-4GlcNAc**6S** β (OS-6).

WFA-glycan binding profile (Figure S5). Non-labeled WFA does not bind to any sialosides tested. The lectin binds to 8 out of 9 asialoglycans (OS-1 through OS-9 except for OS-4)⁷. The overall binding affinity profile of WFA remains unchanged when the lectin is labeled with FITC. Nevertheless, the association constants change either up or down by a factor of less than 10 and a discernable pattern is not be able to be identified.

SNA-glycan binding profile (Figure S6). Non-labeled SNA binds only to α 2-6-linked sialosides (OS-19 through OS-24) except for Neu5Ac α 2-6GalNAc α ^{5, 8}. The overall binding affinity profile remains unchanged upon labeling with FITC except for minor changes in association constants (within a factor of 10) with no clearly identifiable trends.

Equilibrium dissociation constants of 7 unlabeled and FITC-labeled lectins with 24 glycans are tabulated in Table-S1, Table-S2, Table-S3, Table-S4, Table-S5, Table-S6, Table-S7, and Table-S8. We only list the constants of more tightly bound lectin-glycan complexes, i.e., those corresponding to solid columns in Figure 3 through Figure 5 and Figure S2 through S6.

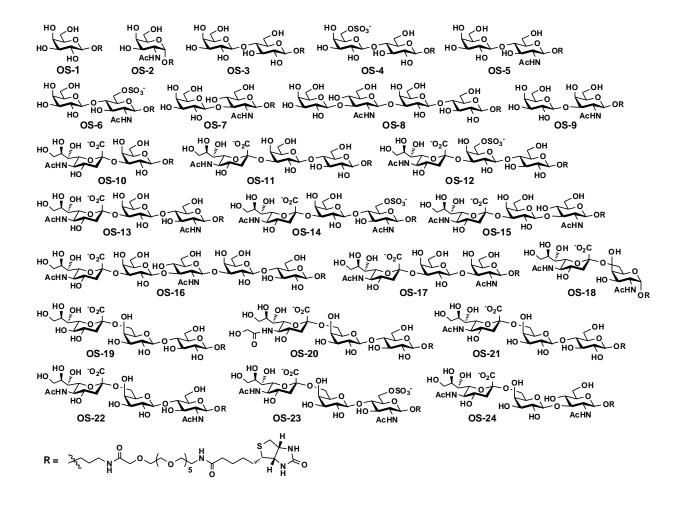


Figure S1. Structures of 24 oligosaccharides marked by the glycan ID numbers. Each oligosaccharide is conjugated to a biotin through a HEG linker so that when the biotin anchors the conjugate on a streptavidin-coated glass surface, the oligosaccharide remains functionally accessible by solution-phase glycan-binding proteins.

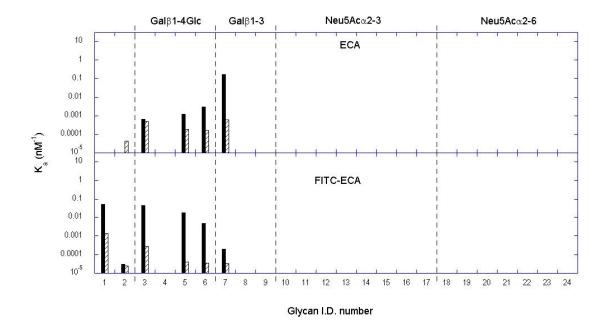


Figure S2. Equilibrium association constants of ECA (top panel) and FITC-ECA (bottom panel) binding to 24 glycans. FITC labeling mainly causes the affinity of ECA to increase except for OS-2 and OS-7.

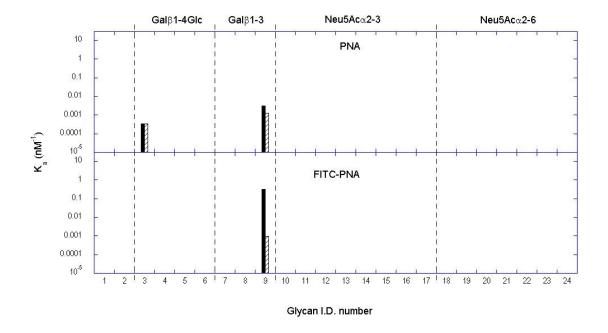


Figure S3. Equilibrium association constants of PNA (top panel) and FITC-PNA (bottom panel) binding to 24 glycans. Unlike non-labeled PNA, FITC-PNA does not bind to OS-3, yet the labeled PNA binds to OS-9 with a 100-fold increased affinity.

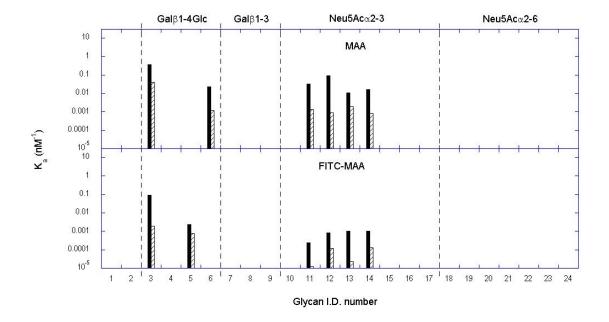


Figure S4. Equilibrium association constants of MAA (top panel) and FITC-MAA (bottom panel) binding to 24 glycans. FITC labeling mainly reduces the affinity of MAA to 4 α 2-3-linked sialosides (OS-11 through OS-14) and to Gal β 1-4Glc β (OS-3). Interestingly, unlike non-labeled MAA which binds to Gal β 1-4GlcNAc6S β (OS-6), the FITC-MAA binds to Gal β 1-4GlcNAc β (OS-5) instead.

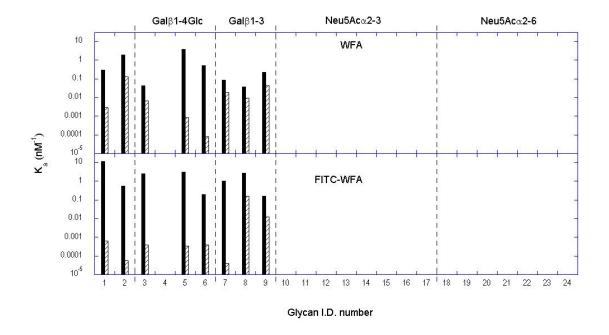


Figure S5. Equilibrium association constants of WFA (top panel) and FITC-WFA (bottom panel) binding to 24 glycans. FITC labeling only changes the magnitudes of the affinity constants (association constants) within a factor of 10, and the overall affinity profile remains intact.

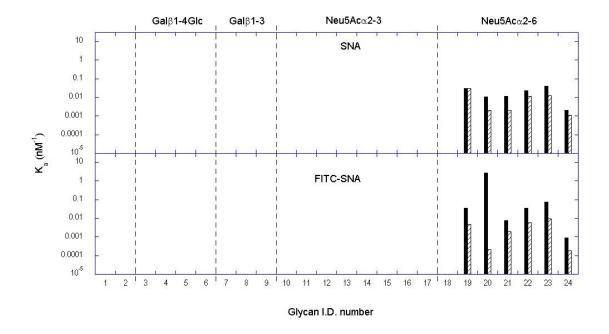


Figure S6. Equilibrium association constants of SNA (top panel) and FITC-SNA (bottom panel) binding to 24 glycans. FITC labeling does not change the overall affinity profile of SNA except for the values of association constants more or less within a factor of 10.

Table-S1:Equilibrium dissociation constants K_d of unlabeled and FITC-labeled WGA
with 24 glycans. Only the constants of the more tightly bound lectin-glycan
complexes are listed, corresponding to the solid columns ($K_a = 1/K_d$) in Figure
3. Symbol "*" means $K_d > 500 \ \mu M$.

Glycan I.D.	Gly	can structures			Kd (nM) (unlabeled WGA)	Kd (nM) (FITC-WGA)
OS-1	Gal	β-biotin			*	*
OS-2	GalNAc	α-biotin			0.87	0.92
OS-3	Gal	β1-4Glcβ-			*	*
OS-4	Gal6S	β1-4Glcβ-			*	*
OS-5	Gal	β1-4GlcNAc	β –		0.83	20
OS-6	Gal	β1-4GlcNAc6S	β-		0.09	0.52
OS-7	Gal	β1-3GlcNAc	β –		*	*
OS-8	Gal	β 1-3GlcNAc	β1-3Lac	β –	*	*
OS-9	Gal	β 1-3GalNAc	β –		*	*
OS-10	Neu5Acα2-3Gal	β -biotin			0.16	51
OS-11	Neu5Acα2-3Gal	β1-4Glc	β –		3.15	230
OS-12	Neu5Aca2-3Gal6S	β1-4Glc	β –		1.43	3.9
OS-13	Neu5Acα2-3Gal	β1-4GlcNAc	β –		0.12	18
OS-14	Neu5Acα2-3Gal	β1-4GlcNAc6S	β-		0.42	1460
OS-15	Neu5Acα2-3Gal	β1-3GlcNAc	β –		0.79	130
OS-16	Neu5Aca2-3Gal	β 1-3GlcNAc	β1, 3Lac	β –	1.5	15
OS-17	Neu5Aca2-3Gal	β1-3GalNAc	β –		0.05	770
OS-18	Neu5Acα2-6GalNAc	α -			7.8	*
OS-19	Kdn α2-6Gal	β1-4Glc	β –		*	*
OS-20	Neu5Gcα2-6Gal	β1-4Glc	β –		*	*
OS-21	Neu5Acα2-6Gal	β1-4Glc	β –		168	*
OS-22	Neu5Acα2-6Gal	β1-4GlcNAc	β –		110	*
OS-23	Neu5Acα2-6Gal	β1-4GlcNAc6S	β-		102	*
OS-24	Neu5Acα2-6Gal	β 1-3GlcNAc-			470	*

Table-S2: Equilibrium dissociation constants K_d of unlabeled and FITC-labeled RCA with 24 glycans. Only the constants of the more tightly bound lectin-glycan complexes are listed, corresponding to the solid columns ($K_a = 1/K_d$) in Figure 4. Symbol "*" means $K_d > 500 \mu$ M.

Glycan I.D.	Gly	can structures		Kd (nM) (unlabeled RCA)	Kd (nM) (FITC-RCA)
OS-1	Gal	β-biotin		0.73	0.9
OS-2	GalNAc	α-biotin		*	51
OS-3	Gal	β1-4Glcβ-		0.73	1
OS-4	Gal6S	β1-4Glcβ-		28	*
OS-5	Gal	β 1-4GlcNAc	β –	2.3	0.79
OS-6	Gal	β1-4GlcNAc6S	β-	17	0.96
OS-7	Gal	β 1-3GlcNAc	β –	14	1
OS-8	Gal	β 1-3GlcNAc	β1-3Lac β-	*	115
OS-9	Gal	β 1-3GalNAc	β –	3.6	20
OS-10	Neu5Acα2-3Gal	β-biotin		*	*
OS-11	Neu5Acα2-3Gal	β1-4Glc	β –	*	*
OS-12	Neu5Acα2-3Gal6S	β 1-4Glc	β –	*	*
OS-13	Neu5Acα2-3Gal	β 1-4GlcNAc	β –	*	*
OS-14	Neu5Acα2-3Gal	β 1-4GlcNAc6S	β-	*	*
OS-15	Neu5Acα2-3Gal	β 1-3GlcNAc	β –	*	*
OS-16	Neu5Acα2-3Gal	β 1-3GlcNAc	β1,3Lac β-	*	*
OS-17	Neu5Aca2-3Gal	β 1-3GalNAc	β –	*	*
OS-18	Neu5Acα2-6GalNAc	α-		110	*
OS-19	Kdn α2-6Gal	β 1-4Glc	β –	53	69
OS-20	Neu5Gcα2-6Gal	β1-4Glc	β –	33	67
OS-21	Neu5Acα2-6Gal	β1-4Glc	β –	1.7	21
OS-22	Neu5Acα2-6Gal	β 1-4GlcNAc	β –	58	1530
OS-23	Neu5Acα2-6Gal	β1-4GlcNAc6S	β-	2.9	275
OS-24	Neu5Acα2-6Gal	β1-3GlcNAc-		210	*

Table-S3:Equilibrium dissociation constants K_d of unlabeled RCA and goat IgG-RCA
precomplexes with 24 glycans. Only the constants of the more tightly bound
lectin-glycan complexes are listed, corresponding to the solid columns ($K_a = 1/K_d$) in Figure 5. Symbol "*" means $K_d > 500 \mu$ M.

Glycan I.D.	Glye	can structures		Kd (nM) (unlabeled RCA)	Kd (nM) (IgG-RCA)
OS-1	Gal	β -biotin		0.73	2.2
OS-2	GalNAc	α-biotin		*	*
OS-3	Gal	β1-4Glcβ-		0.73	0.32
OS-4	Gal6S	β1-4Glcβ-		28	*
OS-5	Gal	β1-4GlcNAc	β –	2.3	0.36
OS-6	Gal	β1-4GlcNAc6S	β –	17	2.9
OS-7	Gal	β1-3GlcNAc	β –	14	*
OS-8	Gal	β1-3GlcNAc	β1-3Lac β-	*	*
OS-9	Gal	β1-3GalNAc	β –	3.6	*
OS-10	Neu5Acα2-3Gal	β-biotin		*	*
OS-11	Neu5Acα2-3Gal	β1-4Glc	β –	*	*
OS-12	Neu5Aca2-3Gal6S	β1-4Glc	β –	*	*
OS-13	Neu5Aca2-3Gal	β1-4GlcNAc	β –	*	*
OS-14	Neu5Aca2-3Gal	β1-4GlcNAc6S	β –	*	*
OS-15	Neu5Aca2-3Gal	β1-3GlcNAc	β –	*	*
OS-16	Neu5Aca2-3Gal	β1-3GlcNAc	β1,3Lac β-	*	*
OS-17	Neu5Acα2-3Gal	β1-3GalNAc	β –	*	*
OS-18	Neu5Acα2-6GalNAc	α -		110	141
OS-19	Kdn α2-6Gal	β1-4Glc	β –	53	177
OS-20	Neu5Gcα2-6Gal	β1-4Glc	β –	33	82
OS-21	Neu5Aca2-6Gal	β1-4G1c	β –	1.7	1.1
OS-22	Neu5Acα2-6Gal	β1-4GlcNAc	β –	58	31
OS-23	Neu5Acα2-6Gal	β1-4GlcNAc6S	β –	2.9	10.4
OS-24	Neu5Acα2-6Gal	β1-3GlcNAc-		210	*

Table-S4: Equilibrium dissociation constants K_d of unlabeled and FITC-labeled ECA with 24 glycans. Only the constants of the more tightly bound lectin-glycan complexes are listed, corresponding to the solid columns ($K_a = 1/K_d$) in Figure S2. Symbol "*" means $K_d > 500 \mu$ M.

Glycan I.D.	Glyo	can structures		Kd (nM) (unlabeled ECA)	Kd (nM) (FITC-ECA)
OS-1	Gal	β-biotin		*	20
OS-2	GalNAc	α-biotin		0.03	33700
OS-3	Gal	β1-4Glcβ-		1570	21
OS-4	Gal6S	β1-4Glcβ-		*	*
OS-5	Gal	β 1-4GlcNAc	β –	820	54
OS-6	Gal	β1-4GlcNAc6S	β-	336	220
OS-7	Gal	β 1-3GlcNAc	β –	6.2	5100
OS-8	Gal	β 1-3GlcNAc	β1-3Lac β-	*	*
OS-9	Gal	β 1-3GalNAc	β –	*	*
OS-10	Neu5Acα2-3Gal	β-biotin		*	*
OS-11	Neu5Aca2-3Gal	β1-4Glc	β –	*	*
OS-12	Neu5Acα2-3Gal6S	β 1-4Glc	β –	*	*
OS-13	Neu5Aca2-3Gal	β1-4GlcNAc	β –	*	*
OS-14	Neu5Aca2-3Gal	β1-4GlcNAc6S	β-	*	*
OS-15	Neu5Aca2-3Gal	β 1-3GlcNAc	β –	*	*
OS-16	Neu5Aca2-3Gal	β 1-3GlcNAc	β1,3Lac β-	*	*
OS-17	Neu5Aca2-3Gal	β 1-3GalNAc	β –	*	*
OS-18	Neu5Acα2-6GalNAc	α -		*	*
OS-19	Kdn α2-6Gal	β1-4Glc	β –	*	*
OS-20	Neu5Gcα2-6Gal	β1-4Glc	β –	*	*
OS-21	Neu5Acα2-6Gal	β1-4Glc	β –	*	*
OS-22	Neu5Acα2-6Gal	β 1-4GlcNAc	β –	*	*
OS-23	Neu5Acα2-6Gal	β1-4GlcNAc6S	β-	*	*
OS-24	Neu5Acα2-6Gal	β1-3GlcNAc−		*	*

Table-S5:Equilibrium dissociation constants K_d of unlabeled and FITC-labeled PNA
with 24 glycans. Only the constants of the more tightly bound lectin-glycan
complexes are listed, corresponding to the solid columns ($K_a = 1/K_d$) in Figure
S3. Symbol "*" means $K_d > 500 \ \mu M$.

Glycan I.D.	Gly	can structures			Kd (nM) (unlabeled PNA)	Kd (nM) (FITC-PNA)
OS-1	Gal	β-biotin			*	*
OS-2	GalNAc	a-biotin			*	*
OS-3	Gal	β1-4Glcβ-			2900	*
OS-4	Gal6S	β1-4Glcβ-			*	*
OS-5	Gal	β 1-4GlcNAc	β –		*	*
OS-6	Gal	β1-4GlcNAc6S	β-		*	*
OS-7	Gal	β 1-3GlcNAc	β –		*	*
OS-8	Gal	β 1-3GlcNAc	β1-3Lac β	3 -	*	*
OS-9	Gal	β1-3GalNAc	β –		317	3.2
OS-10	Neu5Acα2-3Gal	β-biotin			*	*
OS-11	Neu5Aca2-3Gal	β1-4Glc	β –		*	*
OS-12	Neu5Acα2-3Gal6S	β1-4Glc	β –		*	*
OS-13	Neu5Aca2-3Gal	β1-4GlcNAc	β –		*	*
OS-14	Neu5Aca2-3Gal	β1-4GlcNAc6S	β-		*	*
OS-15	Neu5Aca2-3Gal	β 1-3GlcNAc	β –		*	*
OS-16	Neu5Aca2-3Gal	β 1-3GlcNAc	β1,3Lac β	3 -	*	*
OS-17	Neu5Aca2-3Gal	β 1-3GalNAc	β –		*	*
OS-18	Neu5Acα2-6GalNAc	α-			*	*
OS-19	Kdn α2-6Gal	β1-4Glc	β –		*	*
OS-20	Neu5Gcα2-6Gal	β1-4Glc	β –		*	*
OS-21	Neu5Aca2-6Gal	β1-4Glc	β –		*	*
OS-22	Neu5Acα2-6Gal	β 1-4GlcNAc	β –		*	*
OS-23	Neu5Acα2-6Gal	β1-4GlcNAc6S	β –		*	*
OS-24	Neu5Aca2-6Gal	β1-3GlcNAc-			*	*

Table-S6:Equilibrium dissociation constants K_d of unlabeled and FITC-labeled MAA
with 24 glycans. Only the constants of the more tightly bound lectin-glycan
complexes are listed, corresponding to the solid columns ($K_a = 1/K_d$) in Figure
S4. Symbol "*" means $K_d > 500 \ \mu M$.

Glycan I.D.	Glyo	can structures			Kd (nM) (unlabeled MAA)	Kd (nM) (FITC-MAA)
OS-1	Gal	β-biotin			*	*
OS-2	GalNAc	α-biotin			*	*
OS-3	Gal	β1-4Glcβ-			2.8	11
OS-4	Gal6S	β1-4Glcβ-			*	*
OS-5	Gal	β1-4GlcNAc	β –		*	430
OS-6	Gal	β1-4GlcNAc6S	β –		44	*
OS-7	Gal	β1-3GlcNAc	β –		*	*
OS-8	Gal	β1-3GlcNAc	β1-3Lac	β –	*	*
OS-9	Gal	β1-3GalNAc	β –		*	*
OS-10	Neu5Acα2-3Gal	β -biotin			*	*
OS-11	Neu5Acα2-3Gal	β1-4Glc	β –		31	4200
OS-12	Neu5Acα2-3Gal6S	β1-4Glc	β –		11	1220
OS-13	Neu5Acα2-3Gal	β1-4GlcNAc	β –		94	980
OS-14	Neu5Acα2-3Gal	β1-4GlcNAc6S	β –		59	990
OS-15	Neu5Acα2-3Gal	β1-3GlcNAc	β –		*	*
OS-16	Neu5Acα2-3Gal	β1-3GlcNAc	β1, 3Lac	β –	*	*
OS-17	Neu5Acα2-3Gal	β1-3GalNAc	β –		*	*
OS-18	Neu5Acα2-6GalNAc	α-			*	*
OS-19	Kdn α2-6Gal	β1-4Glc	β –		*	*
OS-20	Neu5Gcα2-6Gal	β1-4Glc	β –		*	*
OS-21	Neu5Acα2-6Gal	β1-4Glc	β –		*	*
OS-22	Neu5Acα2-6Gal	β1-4GlcNAc	β –		*	*
OS-23	Neu5Acα2-6Gal	β1-4GlcNAc6S	β –		*	*
OS-24	Neu5Aca2-6Gal	β 1-3GlcNAc-			*	*

Table-S7:Equilibrium dissociation constants K_d of unlabeled and FITC-labeled WFA
with 24 glycans. Only the constants of the more tightly bound lectin-glycan
complexes are listed, corresponding to the solid columns ($K_a = 1/K_d$) in Figure
S5. Symbol "*" means $K_d > 500 \ \mu M$.

Glycan I.D.	Gly	can structures			Kd (nM) (unlabeled MAA)	Kd (nM) (FITC-MAA)
OS-1	Gal	β-biotin			*	*
OS-2	GalNAc	a-biotin			*	*
OS-3	Gal	β1-4Glcβ-			2.8	11
OS-4	Gal6S	β1-4Glcβ-			*	*
OS-5	Gal	β1-4GlcNAc	β –		*	430
OS-6	Gal	β1-4GlcNAc6S	β –		44	*
OS-7	Gal	β 1-3GlcNAc	β –		*	*
OS-8	Gal	β 1-3GlcNAc	β1-3Lac	β –	*	*
OS-9	Gal	β 1-3GalNAc	β –		*	*
OS-10	Neu5Acα2-3Gal	β-biotin			*	*
OS-11	Neu5Aca2-3Gal	β1-4Glc	β –		31	4200
OS-12	Neu5Acα2-3Gal6S	β1-4Glc	β –		11	1220
OS-13	Neu5Acα2-3Gal	β1-4GlcNAc	β –		94	980
OS-14	Neu5Aca2-3Gal	β1-4GlcNAc6S	β-		59	990
OS-15	Neu5Aca2-3Gal	β1-3GlcNAc	β –		*	*
OS-16	Neu5Aca2-3Gal	β1-3GlcNAc	β1, 3Lac	β –	*	*
OS-17	Neu5Aca2-3Gal	β1-3GalNAc	β –		*	*
OS-18	Neu5Acα2-6GalNAc	α-			*	*
OS-19	Kdn α2-6Gal	β1-4Glc	β –		*	*
OS-20	Neu5Gcα2-6Gal	β1-4Glc	β –		*	*
OS-21	Neu5Acα2-6Gal	β1-4Glc	β –		*	*
OS-22	Neu5Acα2-6Gal	β1-4GlcNAc	β –		*	*
OS-23	Neu5Acα2-6Gal	β1-4GlcNAc6S	β –		*	*
OS-24	Neu5Acα2-6Gal	β 1-3GlcNAc-			*	*

Table-S8:Equilibrium dissociation constants K_d of unlabeled and FITC-labeled SNA
with 24 glycans. Only the constants of the more tightly bound lectin-glycan
complexes are listed, corresponding to the solid columns ($K_a = 1/K_d$) in Figure
S6. Symbol "*" means $K_d > 500 \ \mu M$.

Glycan I.D.	Glyo	can structures			Kd (nM) (unlabeled MAA)	Kd (nM) (FITC-MAA)
OS-1	Gal	β-biotin			*	*
OS-2	GalNAc	α-biotin			*	*
OS-3	Gal	β1-4Glcβ-			2.8	11
OS-4	Gal6S	β1-4Glcβ-			*	*
OS-5	Gal	β1-4GlcNAc	β –		*	430
OS-6	Gal	β1-4GlcNAc6S	β –		44	*
OS-7	Gal	β1-3GlcNAc	β –		*	*
OS-8	Gal	β1-3GlcNAc	β1-3Lac	β –	*	*
OS-9	Gal	β 1-3GalNAc	β –		*	*
OS-10	Neu5Acα2-3Gal	β-biotin			*	*
OS-11	Neu5Aca2-3Gal	β1-4Glc	β –		31	4200
OS-12	Neu5Aca2-3Gal6S	β1-4Glc	β –		11	1220
OS-13	Neu5Aca2-3Gal	β1-4GlcNAc	β –		94	980
OS-14	Neu5Aca2-3Gal	β1-4GlcNAc6S	β –		59	990
OS-15	Neu5Aca2-3Gal	β1-3GlcNAc	β –		*	*
OS-16	Neu5Aca2-3Gal	β1-3GlcNAc	β1, 3Lac	β –	*	*
OS-17	Neu5Acα2-3Gal	β1-3GalNAc	β –		*	*
OS-18	Neu5Acα2-6GalNAc	α-			*	*
OS-19	Kdn α2-6Gal	β1-4Glc	β –		*	*
OS-20	Neu5Gcα2-6Gal	β1-4Glc	β –		*	*
OS-21	Neu5Aca2-6Gal	β1-4Glc	β –		*	*
OS-22	Neu5Acα2-6Gal	β1-4GlcNAc	β –		*	*
OS-23	Neu5Acα2-6Gal	β1-4GlcNAc6S	β –		*	*
OS-24	Neu5Acα2-6Gal	β 1-3GlcNAc-			*	*

References:

- 1. P. M. Kaladas, E. A. Kabat, J. L. Iglesias, H. Lis and N. Sharon, *Archives of biochemistry and biophysics*, 1982, **217**, 624-637.
- 2. H. De Boeck, F. G. Loontiens, H. Lis and N. Sharon, *Archives of biochemistry and biophysics*, 1984, **234**, 297-304.
- 3. M. E. A. Pereira, E. A. Karat, R. Lotan and N. Sharon, *Carbohydrate research*, 1976, **51**, 117 118.
- 4. W. C. Wang and R. D. Cummings, *The Journal of biological chemistry*, 1988, **263**, 4576-4585.
- 5. S. R. Haseley, P. Talaga, J. P. Kamerling and J. F. Vliegenthart, *Analytical biochemistry*, 1999, **274**, 203-210.
- 6. R. N. Knibbs, I. J. Goldstein, R. M. Ratcliffe and N. Shibuya, *The Journal of biological chemistry*, 1991, **266**, 83-88.
- 7. H. J. Allen, E. A. Johnson and K. L. Matta, *Carbohydrate research*, 1980, **86**, 123-131.
- 8. N. Shibuya, I. J. Goldstein, W. F. Broekaert, M. Nsimba-Lubaki, B. Peeters and W. J. Peumans, *The Journal of biological chemistry*, 1987, **262**, 1596-1601.