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Supplementary Figures.  
 

 
 

Fig. S1. Bistability and hysteresis in GTPase cascades in groups I - VI: responses to gradual 

changes in GAP1 concentrations. Hysteretic behavior of the steady-state responses of active GTPase 

fractions, g1p (purple) and g2p (green), to the changes in the input GAP1 activity (parameter r2) are 

shown. Dotted lines correspond to unstable steady states located at the intermediate branch of the curve 

between turning points P1 and P2 (marked bold). The dependencies of steady-state responses on 

parameters are identical for all eight designs within a group, if the relationships between kinetic 

parameters enabling the identity of steady states are satisfied (see Table 1, Methods). For each group I - 

VI, the hysteresis curves are calculated for topology design 1, whose kinetic parameters are given in 

Table S1 where parameter r2 is varied in the ranges shown (s-1). Note that the stationary, active GTPase 

fractions behave similarly when the input GEF or GAP activity is changed by altering the strength of the 

autocatalytic loop (given by values of the multiplies α11 and α12, Eq.4, Methods) rather than by changing 

the maximal rate r1 or r2. 
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Fig.S2. Typical nullcline shapes for 16 cascade topologies that comprise VII and VIII groups. (a). 

Group VII. The g1p-nullcline (purple) is a monotone decreasing function of g1p and the g2p-nullcline 

(green) is a monotone increasing function of g1p, which cannot intersect at more than one point. (b). 

Group VIII. The g1p-nullcline (purple) is a monotone increasing function of g1p and the g2p-nullcline 

(green) is a monotone decreasing function of g1p, and, therefore, these two nullclines cannot intersect at 

more than one point. Kinetic parameters are the following: (a)  r1= 1, r2= 0.13, r3= 10, r4= 30 (s-1), m1= 

0.4, m2=0.09, m3= 2, m4= 0.01, a11= 0.6, m11= 0.1, a13= 100, m13= 3, a21= 0.01, m21= 0.1; (b) r1= 1, r2= 

1.5, r3= 1, r4= 0.01 (s-1), m1= 1, m2=5, m3= 0.1, m4= 0.05, a11= 0.01, m11= 0.005, a13= 0.004, m13= 0.002, 

a21= 100, m21= 2.  
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Fig. S3. Oscillatory regimes of 16 cascades comprising groups I and II. (a)  The g1p-

nullclines (purple, N-mirror shaped, group I, and N-shaped, group II) and the g2p-nullclines 

(green, monotone) intersect at a single point (marked in bold) corresponding to an unstable 

steady state. The limit cycle trajectories (blue) on the plane (g1p, g2p) are shown for kinetic 

designs 1 and 5. Arrows indicate the direction of motion. (b, c) Sustained oscillations of active 

GTPase fractions (g1p, purple and g2p, green) are shown for all kinetic designs comprising groups 

I and II. Kinetic parameters are presented in Table S2 for design 1, and the parameter value 

relationships for other designs are specified in Table 1 (Methods). For illustrative purposes, for 

design 4 in group I the constitutive GEF1 and GAP1 activities were increased by a factor of 2 

compared to the activities presented in Table S2, as follows, r1= 10, r2= 8 (s-1). 
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Fig. S4. Excitable behavior of GTPase cascades. Initially, each cascade resides in a stable, but 

excitable steady state. For group I cascades (a, b), the first g1p-nullcline (purple) is N-mirror shaped, and 

the second g2p-nullcline (green) is a monotone increasing function of g1p. For group II cascades (c, d), 

the first g1p-nullcline (purple) is N- shaped, and the second g2p-nullcline (green) is a monotone 
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decreasing function of g1p (a - d). The two nullclines intersect at a single point, corresponding to a stable 

steady state (S, bold black dot) positioned at the left arm (a, c) or the right arm (b, d) of the g1p-nullcine. 

The different steady state positions are brought about by the changes in GEF2 activity, described by the 

parameter r3, whose magnitudes and the corresponding steady-state values of GTPase fractions (g1pss, 

g2pss) are given in Table S2. The trajectories (blue) presented on the phase plane (g1p, g2p) correspond to 

over-threshold perturbations (shown by dotted lines which start with steady-state values S and end with 

red dots). Panels (e - h) show temporal responses of active GTPase fractions, g1p (purple) and g2p 

(green), to sub-threshold (dashed lines) and over-threshold (solid lines) perturbations.  At time t = 3 s 

(marked by black arrow), the steady-state concentration of the active GTPase at the first level (g1p) is 

perturbed. Sub-threshold perturbations cause small responses shown by dashed lines. Over-threshold 

perturbations cause large overshoot responses where the active GTPase fractions can significantly 

increase or decrease, generating temporal pulses of GTPase activities (threshold values of g1p 

perturbation amplitudes are marked by red arrows). It is instructive to note that while GEF2 activity (r3) 

varies (decreases for group I cascades or increases for group II cascades), the excitable regime, 

corresponding to the stable steady state positioned at the left arm of the g1p-nullcline (a, c) becomes 

oscillatory, corresponding to the unstable steady state positioned at the middle arm (Fig. S3a). With a 

further change in r3, the oscillatory regime becomes again excitable, corresponding to the stable steady 

state positioned at the left arm of the g1p-nullcline (b, d).   
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Fig. S5. Spatial gradient of GAP2 constitutive activity. The activity (r4) of GAP2 decreases with the 

distance (x) from the plasma membrane, as specified by Eq. 10 in Methods. The kinetic parameter values 

are the following, r4(0)=0.5, r4(1)=0.25 (s-1), and η=6.7. The arrow indicates the spatial coordinate 

where a transition from an oscillatory to excitable regime occurs (the Hopf bifurcation).  
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Fig. S6. Propagation or vanishing of periodic pulses in spatially heterogeneous media. The spatial 

gradient of GAP2 constitutive activity is described by Eq. 10 (Methods) with slightly different kinetic 

parameters in comparison with Fig. 6, and Fig. S5: r4(0)=1, r4(1)=0.5, and r3= 0.4 (s-1). (a) Close to the 

membrane (x ≈ 0), active GTPase fractions (g1p, purple and g2p, green) oscillate with a period of 1.5 s. A 

decrease in GAP2 activity farther away from the membrane brings about the change in the cascade 

dynamics: oscillatory behavior is no longer observed, whereas excitable behavior emerges at x ≈ 0.2 (the 

Hopf bifurcation). (b) Since this period of oscillations is smaller than the recovery time (known as the 

refractory period) of the emerging excitable media at the distance x > 0.2 from the membrane, not all 

oscillatory activity maxima lead to the formation of GTPase activity pulses with a large amplitude; some 

pulses become rather small and subsequently vanish during the propagation through the cell. (c) A pulse-

like wave propagating through the cell is shown for a selected time window (0.3 - 1.2 s), using different 

colors for different time moments. (c) A 3-D presentation of propagating waves of periodic GTPase 

activity pulses driven by oscillating GTPase activities near the membrane. The remaining kinetic 

parameters and the initial GTPase activities, which correspond to a spatially homogeneous steady state, 

are given in Table S2.    
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Fig. S7. Influence of the changes in the total GTPase abundances on the spatiotemporal cascade 

dynamics. The figure shows changes in the nullclines and the corresponding dynamic regimes following 

the alterations in the total abundance of the first and second GTPases ( totG1  and totG2 ), tottot
new GnG 111 ⋅=  

and tottot
new GnG 222 ⋅= . According to Eqs. 1 -4 of the main text, this results in the following parameter 

changes: iij
new
ij

newnewnewnew nmmnmmnmmnmmnmm /,/,/,/,/ 244233122111 ===== . a -Excitable 

regime, the nullclines are calculated for parameter values given in Table S2. Following the changes in 

the total abundances as indicated by the coefficients n1 and n2, the system shifts to different dynamics 

regimes as follows, b - bistable, c - oscillatory, and d - monostable regimes. e -Bistable regime, the 

nullclines are calculated for parameter values given in Table S1. Following the changes in the total 

abundances as indicated by the coefficients n1 and n2, the system shifts to different dynamics regimes as 

follows, f -excitable, g - oscillatory, and h - monostable regimes. 
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Supplementary Documents.  

Supplementary Document 1. Different design groups I - VIII are determined by the 

dimensionless multipliers ijα . 

 Each cascade group I - VIII is characterized in by the values of the dimensional multipliers αij, as 

follows,  

Groups I - IV are each hallmarked by an auto-activation loop, (α11 > 1, α12 = 1) or (α11 = 1, α12 < 1), 

and the remaining αij satisfy the following constraints,  

Group I:     (α21 < 1, α22 = 1) or (α21 = 1, α 22 > 1); (α13 > 1, α14 = 1) or (α13 = 1, α14 < 1). 

Group II:    (α21 > 1, α22 = 1) or (α21 = 1, α22 < 1); (α13 < 1, α14 = 1) or (α13 = 1, α14 > 1). 

Group III:   (α21 > 1, α22 = 1) or (α21 = 1, α22 < 1); (α13 > 1, α14 = 1) or (α13 = 1, α14 < 1). 

Group IV:  (α21 < 1, α22 = 1) or (α 21 = 1, α22 > 1); (α13 < 1, α 14 = 1) or (α13 = 1, α14 > 1). 

 

Groups V - VIII are each hallmarked by an auto-inhibition loop, (α11 < 1, α12 = 1) or (α11 = 1, α12 > 

1), and the remaining αij satisfy the following constraints,  

Group V:    (α21 > 1, α22 = 1) or (α21 = 1, α22 < 1);   (α13 > 1, α14 = 1) or (α13 = 1, α14 < 1).  

Group VI:   (α21 < 1, α22 = 1) or (α 21 = 1, α22 > 1);   (α13 < 1, α14 = 1) or (α13 = 1, α 14 > 1).  

Group VII:  (α21 < 1, α22 = 1) or (α21 = 1, α22 > 1);   (α13 > 1, α14 = 1) or (α13 = 1, α14 < 1).  

Group VIII: (α21 > 1, α22 = 1) or (α21 = 1, α22 < 1);   (α13 < 1, α14 = 1) or (α13 = 1, α14 > 1).  

 

 Supplementary Document 2. Relationships between kinetic parameters that enable 

identical steady states for molecular designs 1 - 8 comprising each topology group (I - VIII).  

 Using Table 1 (Methods), it is convenient to present the equations that determine nullclines for 

cascade designs 1 -8, as follows.  

 

 

 Comparing the nullcline equations of design 1 with such equations for designs 2 - 8 above, we 

can see that these nullclines become identical provided that the following relationships are satisfied:  

 

Definition 

of nullclines 

Design 1 Design 2 Design 3 Design 4 

0/
0/

2

1

=
=

dtpdg
dtpdg

 
0

0

4313

212111

=−
=−

uu
uu

α
αα

 0
0)(

4313

21
1

221122

=−
=−−

uu
uu

α
ααα

 
0

0)(

4313

21
1

22
1

122212

=−
=−−−

uu
uu

α
αααα

 
0

0)(

4313

2121
1

1212

=−
=−−

uu
uu

α
ααα

 Design 5 Design 6 Design 7 Design 8 

0/
0/

2

1

=
=

dtpdg
dtpdg  

0)(

0

43
1

1414

212111

=−

=−
− uu

uu

αα

αα

 
0)(

0)(

43
1

1414

21
1

221122

=−

=−
−

−

uu

uu

αα

ααα

 
0)(

0)(

43
1

1414

21
1

22
1

122212

=−

=−
−

−−

uu

uu

αα

αααα

0)(

0)(

43
1

1414

2121
1

1212

=−

=−
−

−

uu

uu

αα

ααα  

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2012



 11

Design 1 and Design 2: 
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Design 1 and Design 4:   
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Design 1 and Design 5:   
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Design 1 and Design 6:   
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Design 1 and Design 7:   
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Design 1 and Design 8:   
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The parameter relationships presented here in curly brackets are assembled in Table 1 (Methods).   

 

 Supplementary Document 3. Local stability and dynamic properties are identical for all 8 

cascade circuitries within each of topology groups I - VIII.  

 We showed above that for the 8 different kinetic designs comprising each of groups I - VIII, the 

nullclines and steady states are identical if certain relationships between kinetic constants of regulatory 

interactions (feedback or feedforward loops) are fulfilled (Table 1, Methods and Supplementary material 

2). Here we prove that the local stability and resulting dynamic properties of these designs are also the 

same. To simplify notations in the mathematical proofs, hereafter we designate the active GTPase 

fractions as follows,  
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   )()(),()( 2211 tpgtytpgty == .  

It is convenient to introduce auxiliary parameters  1κ  and  2κ  as dimensionless multipliers, which 

modulate the rates (through modulation of constitutive GEF and GAP activities) at the first and second 

cascade layers, respectively. Thus, the parameter  1κ  is a dimensionless multiplier for the rates 1u  and 

2u , and  2κ  is a multiplier of the rates 3u  and 4u . Using 1κ  and  2κ , the dynamics of cascade design 1 

can be described as follows (see Eqs. 3, 4 in the main text and Table 1 in Methods), 
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where p is a vector of parameters, which include the kinetic constants and GEF and GAP concentrations 

(see Methods for the definitions of the functions ijα  and iu ).  

 If the relationships between kinetic parameters given in Table 1 (Methods) are fulfilled, the 

equations describing the dynamics of other designs 2 - 8, can be presented as, 
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where the positive multipliers, ),( 21 yyiϕ  > 0, which determine a particular design are given in the table 

below,  
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The steady states are determined as follows,  

0;0 21 ==
dt

dy
dt
dy

     (S3).  

One can readily see that the nullclines and steady states are identical for both systems 1 and 2 described 

by Eqs. S1 and S2, respectively.  Let ssy1 , ssy2 , ss
1ϕ , and ss

2ϕ  be the values of the variables y1, y2 and the 

functions φi at a particular steady state, where  
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 We will next analyze the local stability (also termed exponential stability) of systems 1 and 2 

near any steady state point. The Jacobian matrices (J1 and J2) for systems 1 and 2 at the steady state 

( ssy1 , ssy2 ) are presented by Eqs. S5 and S6, respectively,  
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We see that for system 2, the determinant of the Jacobian matrix J2 is multiplied by a positive factor that 

equals the product of ss
1ϕ and ss

2ϕ . Therefore, the condition det(J) = 0 will be true (or false) at the same 

parameter values for both systems 1 and 2. Consequently, if the saddle-node bifurcation occurs, it will 

take place for both systems simultaneously. However, Eq. S6 shows that the trace of the Jacobian is 

different for these two systems,  
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Therefore, at first glance, the eigen values of the Jacobians J1 and J2 are not equal. Can we still say 

something about the local stability of a steady state of system 2, if we know the local stability of the 

same steady state of system 1?  

 Fortunately, the dimensionless multipliers,  1κ  and  2κ , can be modified without any change of 

the steady state values, ssy1 , ssy2 . If for system 2, we select the *
1κ  and *

2κ  values, as follows, 1
*
11 κκϕ =ss , 

2
*
22 κκϕ =ss , then the Jacobians of both systems 1 and 2 become identical at the same steady state, ssy1 , 

ssy2 ,  

   J1( 21 ,κκ ) = J2( *
2

*
1 ,κκ ).      

 This proves that both systems 1 and 2 (which are described by Eq. S1 and S2, respectively) can 

have the same Jacobian eigen values for the stationary solution, and thus possess similar local stability 

and dynamic properties (although at different parameter values, at the value 1κ  and 2κ  for system 1 and 
*
1κ  and *

2κ  for system S2).  
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 Supplementary Document 4. Nullcline analysis.  

 First we show that for topology groups I - VIII, the g2p-nullcline is a monotone function of g1p 

for kinetic parameter values. Since for all 8 cascade designs within each topology group, the nullclines 

are identical when the proper relationships between the regulatory loop constants are fulfilled (see Table 

1, Methods), we only consider nullclines for kinetic design 1.  

 As above, we simplify notations by designating )(),()( 2211 tpgytpgty == . For cascade design 

1 in each topology group (I - VIII), the g2p-nullcline (dy2/dt = 0) is determined as follows (see Eqs. 3 and 

4 and Table 1, Methods),   
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Rearranging, we obtain, 

 )1)(())(( 2131213 −=− yYmyyYa       (S10). 

Here the function Y is introduced to simplify notations, 

 
)1)((

)1()(
2243

2324
2 yymr

ymyryY
−+

−+
=      (S11). 

 We will show now that Ya ≠13  for any y2 value, 10 2 << y . Assuming that 0)( 213 =− yYa  for 

some y2, it follows that the right hand side of Eq. S10 should equal 0, that is, 1)( 2 =yY . Then from our 

initial assumption, 13a  must be equal to 1. Recall that for design 1 in each topology group, 113 ≠a , and 

so our assumption that 0)( 213 =− yYa  must be false, and this proves that Ya ≠13 . 

 Using Eq. S10, 1y  can be presented as the following function of 2y ,   

  
)(

1)()(
213

2
1321 yYa

yYmyy
−

−
=         (S12). 

If the function )( 21 yy  is not monotone, then the derivative 21 / dydy  must equal zero at some 2y ,  

0)(
))((
)1(

22
213

1313

2

1 =′
−

−
= yY

yYa
am

dy
dy     (S13).   

This implies that 0/ 2 =dydY  at some y2. Differentiating Eq. S11 results in the following quadratic 

equation for the 2y  value(s), at which Eq. S13 holds,  

 

   0)1(2)( 4324
2
243 =++−+ mmymymm   (S14). 

Since the discriminant of this quadratic equation is negative, 

0))1((4)()1(44 43
2
434343

2
4 <++−=++−= mmmmmmmmmD , 

Eq. S13 does not have real value solutions. This proves that the g2p-nullcline, dy2/dt = 0, is a monotone 

function. From Eq. S13, we can see that the sign of the derivative, dy2/dy1 is determined by the 
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difference, 113 −a . If 113 >a , the g2p-nullcline is a monotone increasing function of g1p, and when 

113 <a , the g2p-nullcline is a monotone decreasing function. This proves that for cascade designs 

comprising groups I, III, V and VII, the g2p-nullcline is a monotone increasing function, and this 

nullcline is a monotone decreasing function for cascades in groups II, IV, VI, VIII (see Fig. 3 and Fig. 

S2, S3 and S4).  

 Next we show that for topology groups V - VIII, the g1p-nullcline is a monotone function of g2p 

for any values of kinetic parameters. As above, it is sufficient to consider only kinetic design 1. The g1p-

nullcline for cascade design 1 can be determined from the following equation, dy1/dt = 0,  
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Rearranging, we obtain, 

)1)(()())(( 12112121 −=− yZmyyyZa    (S16). 

Here  
)1)()((

))(1()(
111111121

1111112
1 yyamymr

myymyryZ
−++

+−+
=     (S17). 

Since for design 1 in each topology group, 121 ≠a , it can be shown that Za ≠21  for any for any y1 

value, 10 1 << y . Similar to above, the assumption 021 =− Za  for some y2 would imply that 21a  must 

be equal 1, which is untrue for design 1. From Eq. (S16), it follows that,  

   
)(

1)()(
121

1
2112 yZa

yZmyy
−

−
=       (S18). 

If the function )( 12 yy  is not monotone, then the derivative 12 / dydy  must equal zero at some 1y ,  
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Differentiating the function  Z, we obtain the following equation for the 1y  value that satisfies Eq. (S19),  

  0011
2
12

3
13

4
14 =++++ cycycycyc    (S20), 

where the parameter values are given as follows,  
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  (S21). 

Taking Eq. S21 into consideration, it is convenient to regroup the different terms of Eq. S20, presenting 

this equation as the sum of the five following terms,   

054321 =++++ μμμμμ      (S22), 

where,  
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Since all kinetic constants are positive and 111 <a  for each group V-VIII (hallmarked by an auto-

inhibitory loop, Fig. 1b), one can readily see that each term ( 54321 ,,,, μμμμμ ) is positive, and 

therefore the left-hand side of Eq. S20 is always positive. This proves that for cascade designs 

comprising groups V-VIII, Eq. S19 does not have solutions for any 10 1 << y , and the g1p-nullcline, 

dy1/dt = 0, is monotone function. The sign of the derivative, dy1/dy2 is determined by the sign of the 

difference, 121 −a  (see Eq. S13). If 121 >a , the g1p-nullcline is monotone increasing function, and when 

121 <a , the g1p-nullcline is monotone decreasing function. This proves that for cascade designs in 

groups V and VIII, the g1p-nullcline is a monotone increasing function, whereas for groups VI and VII 

the g1p-nullcline is a monotone decreasing function (see Fig. 3 and Fig.S2). 

 

 Supplementary Document 5. Influence of small G-protein overexpression on the 

spatiotemporal cascade dynamics.  

 Many GTPases are overexpressed in cancer 1. Although increases in the total GTPase abundances 

( totG1  and totG2 ) can change the spatiotemporal dynamics, a particular G-protein cascade still belongs to 

the same topology group. In fact, different topology groups are determined by the dimensionless 

multipliers ija  that do not depend on totG1  and totG2  (see Materials and Methods, Eqs 2 and 4, and 

Supplementary Document 1). Therefore, merely overexpression of small G-proteins, but not a mutation 

that can make it constantly active, does not change the types of possible dynamic behaviors in time and 

space. Moreover, under specific saturating conditions the basal GTPase fractions at steady state are 

relatively insensitive to GTPase overexpression 1. Yet in the other cellular context, even relatively small 

variations in the total GTPase abundances can dramatically change the cascade dynamic behavior, as 

illustrated in Fig. S7.  
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Table S1. Kinetic parameters of bistable regimes and active GTPase fractions (g1pss and g2pss) at 

two different steady states S1 and S2 for cascade design 1 in groups I – VI*.  

 
 Design 1 

 Group I Group II Group III Group IV Group V Group VI 

r1 (s-1) 5 10 1 1 1 1 

r2 (s-1) 4 6.5 0.65 0.8 1.6 0.13 

r3 (s-1) 0.13 0.4 0.5 0.1 1 1 

r4 (s-1) 0.072 0.7 0.6 0.5 3 0.01 

m1 0.7 25 25 0.7 1 0.4 

m2 0.15 0.09 0.09 0.15 5 0.09 

m3 0.6 5 5 0.8 2 0.1 

m4 0.05 14 5.5 8 0.005 0.05 

a11 200 200 200 200 0.01 0.6 

m11 4 10 10 4 0.005 0.1 

a13 100 0.005 40 0.05 100 0.004 

m13 40 0.5 10 0.3 3 0.002 

a21 0.02 80 80 0.02 100 0.01 

m21 0.04 20 20 0.04 2 0.1 

 Steady states Steady states Steady states Steady states Steady states Steady states 

 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 

g1pss 0.035 0.59 0.055 0.485 0.038 0.756 0.023 0.91 0.1 0.483 0.078 0.83 

g2pss 0.48 0.83 0.586 0.43 0.516 0.8 0.56 0.23 0.0045 0.49 0.94 0.68 
 

*The input GEF1 activity (parameter r1) is varied to obtain the hysteretic plots shown in Fig. 3 (right 

panels) of the main text. In Figs. 5 and 6 of the main text the relationships between the kinetic 

parameters of designs 1 and 2 is given in Table I (Methods). 
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Table S2. Kinetic parameters of oscillatory and excitable regimes and active GTPase fractions 

(g1pss and g2pss) at steady states for cascade design 1 in groups I and II.  

 
 Design 1 
 Group I Group II 

Oscillatory Excitable Oscillatory Excitable 

r1(s-1) 5 5 10 10

r2(s-1) 4 4 6.5 6.5 

r3(s-1) 0.2 0.4*, 0.125* 1 0.55**, 1.7** 

r4(s-1) 0.5 0.5 0.55 0.55 

m1 0.7 0.7 25 25 

m2 0.15 0.15 0.09 0.09 

m3 0.6 0.6 5 5 

m4 0.05 0.05 14 14 

a11 200 200 200 200 

m11 4 4 10 10 

a13 100 100 0.005 0.005 

m13 3 3 0.05 0.05 

a21 0.02 0.02 80 80 

m21 0.04 0.04 20 20 

 ----- Steady states ----- Steady states 

 

----- 

Sa Sb 

----- 

Sc Sd 

g1pss 0.044 0.59 0.05 0.5 

g2pss 0.46 0.83 0.58 0.44 

 
*Group I: r3= 0.4 and steady state Sa correspond to Figs.4e, 5c and 6 of the main text and Fig.S4a; r3= 

0.125 and steady state Sb correspond to Figs. 4f and 5d of the main text and Fig.S4b.  
**Group II: r3= 0.55 and steady state Sc correspond to Fig. 4g of the main text and Fig.S4c; r3= 1.7 and 

steady state Sd correspond to Fig. 4h of the main text and Fig.S4d.  

For Fig. 4-6 of the main text the relationships between the kinetic parameters of designs 1, 2 and 5 are 

given in Table I (Methods).  
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Table S3. Kinetic parameters of bistable, oscillatory and excitable regimes and active GTPase 

fractions (g1pss , g2pss and g3pss) at two different steady states S1 and S2 of a 3-tier cascade shown in 

Fig. 7 in the main text* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*The steady-state values of active GTPase fractions (g1pss, g2pss, g3pss) were used as the initial spatially 

homogeneous conditions in Fig. 7c (steady state S1) and Fig. 7d (steady state S) of the main text. The 

initial perturbation in Fig. 7c was the following, g1p(x,0) = 0.8 for 0 ≤ x ≤ 0.03. 

 

 Bistable Oscillatory Excitable 

r1(s-1) 1 1 8 

r2(s-1) 20 35 80 

r3(s-1) 5 50 50 

r4(s-1) 4 40 40 

r5(s-1) 0.12 0.12 0.12 

r6(s-1) 0.75 0.75 0.75 

m1 0.5 1.45 1.45 

m2 0.005 1.2 0.01 

m3 0.7 0.7 0.7 

m4 0.15 0.15 0.15 

m5 0.6 0.6 0.6 

m6 0.05 0.05 0.05 

a13 100 100 100 

m13 2 2 2 

a21 200 200 200 

m21 4 4 4 

a25 100 100 100 

m25 15 3 3 

a34 50 50 50 

m34 2 2 2 

 Steady states - Steady state 

 S1 S2  S 

g1pss 0.0025 0.456 0.003 

g2pss 0.19 0.91 0.11 

g3pss 0.014 0.09 0.04 
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