
1 
 

Can Simple Codon Pair Usage Predict Protein-Protein Interaction?  

Yuan Zhou, Ying-Si Zhou, Fei He, Jiangning Song and Ziding Zhang 

 

Electronic Supplemental Information 

 

Supplemental Methods                                                       2-4 

The Supplemental Methods contain three sub-sections: 1) Statistical analyses of the difference of 

codon/codon pair frequency between interacting protein pairs; 2) Probing genomic factors that 

contribute to CCPPI’s performance; and 3) Comparison of CCPPI and other methods in the fruit 

fly dataset. 
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The Supplemental Tables contain the summary of three existing methods (Table S1), the 

optimized SVM parameters (Table S2), and the performance of encodings in various datasets 

(Table S3-S4). We also compared the performance of three sequence-based encodings and three 

homology-dependent methods in the fruit fly dataset (Table S5). The reference organisms for 

phylogenetic profile-based PPI prediction are shown in Table S6. 
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The Supplemental Figures contain the ROC curves illustrating the performance of the simple 

sequence-based encodings (Fig. S1) and the performance of CCPPI, CT encoding, AC encoding 

and the meta predictor based on the optimized SVM parameters (Fig. S2). We also present the 

overlap of predicted true positives for different encodings/methods, either in the yeast dataset 

(Fig. S3) or in the fruit fly dataset (Fig. S5-S6). The results of the statistical analyses of the 

codon/codon pair usage differences between interacting protein pairs after filtering redundant 

sequences are also illustrated in Fig. S4. Finally, the cumulative distribution of mutual 

information among pairs of actual and shuffled phylogenetic profiles of the fruit fly proteins is 

shown in Fig. S7 as a rationale of mutual information cutoff for the phylogenetic profile method. 
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Statistical analyses of codon/codon pair frequency differences between interacting protein 

pairs 

We compared the differences of codon/codon pair frequency between 4,156 interacting protein 

pairs in the DIP yeast core dataset1 and the randomly selected negative protein pairs. The latter 

are 19 times larger than the former. DIP positives were downloaded from the DIP database 

(http://dip.doe-mbi.ucla.edu/dip/Download.cgi). We searched for informative codon pairs whose 

frequency differences in the positives were significantly different from those in the negatives 

[either larger or smaller, according to Welch’s t-test followed by Benjamini-Hochberg correction 

with a certain significance level cutoff (i.e., correted p-value = 0.05)]. In other words, a corrected 

p-value was calculated for each codon pair to describe if it was similarly used or dissimliarly 

used in PPIs, therefore informative in discriminating interacting protein pairs and non-interacting 

protein pairs. We searched informative codons in the same way. 

 

A codon pair could be informative (preferably used in a non-random fashion among interacting 

protein pairs), either dependent or independent of non-random codon usage and non-random 

amino acid pair usage. We attempted to estimate the number of independent ones using 

permutated sequence sets. In a permutated sequence set, only synonymous codons within each 

coding sequence were shuffled. That is to say, we swapped each codon with one randomly 

selected synonymous codon (if existed) throughout the coding sequence. Therefore, the 

distribution of codon pair frequency between interacting protein pairs was altered after such 

shuffling, while that of codon frequency and amino acid pair frequency remained unchanged. We 

generated 1,000 permutated sets and collected codon pairs meeting either of the folowing two 

criteria in each dataset: 1) A codon pair was shown to be similarly used in interacting protein 

pairs by the test described in the above paragraph, and the permutation would result in a less 

similar codon pair usage (paired Student’s t-test followed by Benjamini-Hochberg correction, 

p<0.05); 2) A codon pair was shown to be dissimilarly used in interacting protein pairs, and 

permutation would result in a more similar codon pair usage in interacting protein pairs (paired 

Student’s t-test followed by Benjamini-Hochberg correction, p<0.05). If a codon pair met one of 

the two criteria across at least 950 out of 1,000 permutated sets, this codon pair was treated as an 

informative one that was independent of both non-random codon usage and non-random amino 
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acid pair usage. 

 

Probing genomic factors that contribute to CCPPI’s performance 

We compared true positive predictions of different encoding schemes in terms of multiple factors 

that measure various aspects of interacting protein pairs. The first factor was transcriptional 

co-expression, which was measured by the fraction of transcriptional co-expressed proteins 

during cell cycle.2 Transcriptome data were downloaded from the GEO database 

(http://www.ncbi.nlm.nih.gov/geo/, accession number GSE4987). The mRNA expression 

profiles of 781 proteins from the BIOGRID dataset were believed to have significant fluctuations 

during cell cycle, i.e., they are listed among the top 1,000 periodically expressed genes 

(http://labs.fhcrc.org/breeden/cellcycle/). 1,258 PPIs among them were shown to be 

transcriptional co-expressed (i.e., the absolute Pearson’s correlation coefficient is larger than 0.5). 

Similarly, there were 5,489 PPIs among 1,422 proteins co-expressed at the proteome level during 

yeast cell cycle, according to the protein expression profile3 retrieved from the PeptideAtlas 

database (http://www.peptideatlas.org/repository/publications/flory2005/). Finally, functional or 

subcellular localization similarities between interacting protein pairs were quantified by the RSS 

values4 described in the Materials and Methods section from main text and the original paper by 

Wu et al.4 

 

Comparison of CCPPI and other methods in the fly dataset 

We compared CCPPI with other types of methods, including interolog, domain-domain 

interaction and phylogenetic profile, in the fruit fly (Drosophila melanogaster) dataset. Fruit fly 

sequences were downloaded from the Ensembl database7 (http://nov2010.archive.ensembl.org/, 

version 60). In the case of alternatively spliced genes, the longest coding sequences were used. 

The known physical interactions in fruit fly and the positive predictions of the interolog method8 

were downloaded from the Interolog Finder database (http://interologfinder.org/), while 150,000 

randomly selected non-interacting protein pairs were used as negative benchmarks. The interolog 

method transferred PPIs from other species to the fruit fly orthologous protein pairs. PPIs were 

also predicted from 6,074 known domain-domain interactions curated in the iPfam database.9 

More exactly, two fruit fly proteins were predicted to interact if each of them contained one of 
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the two known interacting domains, respectively. The Pfam domain annotation of each protein 

was downloaded from the Ensembl database.7 

 

Finally, we predicted the fruit fly PPIs using the phylogenetic profile strategy proposed by Sun et 

al10 with modifications. This method predicted two proteins as interacting partners when they 

co-occurred/co-disappeared across a set of the reference genomes. We sampled a reference 

genome by randomly selecting one genome from each clade at certain level of the phylogenetic 

trees available at NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/Taxonomy/). We noted that 

there was a prominent unbalance between the total number of sequenced eukaryote genomes and 

that of sequenced non-eukaryote genomes. Therefore, level 6, level 5 and level 2 were applied to 

the reference genome sampling from eukaryotes, archaea and bacteria, respectively. As a result, 

30 eukaryotes, 65 archaea and 39 bacteria genomes were selected as references (see Table S7 for 

the full list) and their RefSeq proteins were downloaded from NCBI 

(http://www.ncbi.nlm.nih.gov/RefSeq/). Then we generated actual/shuffled phylogenetic profile, 

and calculated mutual information between each protein pairs’ phylogenetic profiles according to 

Sun et al.10 A threshold of 0.15 was used to identify PPIs because none of shuffled profile pair 

could achieve such a high mutual information level (Fig. S7). We also removed PPIs between the 

paralogous proteins from fruit fly as described by Sun et al.10 
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Supplemental Tables 

 

Table S1 Summary of related and previously published sequence-based PPI prediction methods. 

 

Encoding 

scheme 

Algorithm 

framework 

Main benchmarking dataset Performance Ref. 

CT encoding SVM with S 

kernel 

HPRD human positives + the 

equal number of human 

homogeneous negatives a 

Accuracy=83.9% Ref.5 

AC encoding SVM with 

RBF kernel 

DIP yeast positives + the 

equal number of negatives 

with different subcellular 

localization 

Accuracy=86.2% Ref.6 

Codon 

frequency 

difference 

Naive Bayes MIPS yeast positives + about 

1.4 million negatives with 

different subcellular 

localization 

AUC=0.845 b Ref.11

 
a The homogeneous negatives were randomly rewired pairs of positive proteins. 
b This AUC value was estimated from the ROC curve in the original paper. 
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Table S2 The optimized SVM training parameters. 

 

Encoding scheme c (cost parameter) g (gamma parameter) 

CCPPI 64 0.015625 

CT encoding 128 0.0625 

AC encoding 256 0.0625 

 

We optimized the SVM parameters by 10-fold cross-validation tests using a “DIP+Random” 

dataset. In particular, a heuristic strategy for searching the optimized parameters was employed. 

Namely, we started with c=20 and g=2-10, and alternately increased or decreased the value of one 

parameter by two folds. If a better accuracy was achieved, we then continued to increase or 

decrease the values of the parameters until no further improvement was observed. 
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Table S3 Performance of CCPPI and the other two encoding schemes when evaluated on the 

“DIP+RSS Negative” datasets. 

 

Encoding scheme Accuracy (%) Precision (%) Sensitivity (%) MCC 

CCPPI 90.2  0.2 88.5  0.3 92.4  0.3 0.804  0.002 

CT encoding 81.3  0.4 81.9  0.5 80.4  0.5 0.627  0.008 

AC encoding 73.5  0.3 71.5  0.4 78.2  0.3 0.473  0.006 

 

The datasets comprise of interacting and randomly selected non-interacting protein pairs without 

any known similar functions or subcellular localizations. The 10-fold cross-validation tests were 

repeated five times by selecting different negative samples. The results are expressed as mean  

standard deviation. The predictors were trained with the preliminarily optimized parameters. 

 

 

 

Table S4 Performance of CCPPI and the other two encoding schemes on the 

“DIP+Homogenous” datasets. 

 

Encoding scheme Accuracy (%) Precision (%) Sensitivity (%) MCC 

CCPPI 63.7  0.5 66.2  0.7 56.2  1.4 0.278  0.009 

CT encoding 59.3  0.4 59.9  0.5 56.5  0.8 0.186  0.007 

AC encoding 57.1  0.2 57.6  0.3 53.7  1.4 0.142  0.004 

 

The datasets comprise of interacting and randomly selected non-interacting protein pairs through 

rewiring of interacting protein pairs. The 10-fold cross-validation tests were repeated five times 

by selecting different negative samples. The results are expressed as mean  standard deviation. 

The predictors were trained with the preliminarily optimized parameters. 
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Table S5 Performance of different methods/encodings in predicting fruit fly (Drosophila 

melanogaster) PPIs. 

 

Method/Encoding Cutoff Sensitivity (%) Specificity (%) 

CCPPI 0.39 15.6% 92.2% 

CT encoding 0.68 17.7% 90.7% 

AC encoding 0.68 33.0% 81.7% 

Interolog - 3.7% 99.9% 

Domain-domain interaction - 4.3% 99.5% 

Phylogenetic profile 0.15 16.8% 91.1% 

 

The dataset was composed of 26,545 interacting protein pairs and 150,000 randomly selected 

non-interacting protein pairs from the fruit fly genome. See Supplemental Methods for details. 

The cutoff values corresponding to the 90% specificity in the yeast dataset were used for CCPPI, 

the CT encoding and the AC encoding. 
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Table S6 The list of reference genomes used in the phylogenetic profile method. 

 

Eukaryotes Archaea Archaea 

(continue) 

Bacteria Bacteria 

(continue) 

Amphimedon 
queenslandica 

Acidilobus 
saccharovorans 
345-15 

Methanohalobium 
evestigatum Z-7303 

Acaryochloris 
marina 
MBIC11017 

Nitrospira defluvii

Apis mellifera 
Aeropyrum pernix 
K1 

Methanohalophilus 
mahii DSM 5219 

Acidaminococcus 
intestini 
RyC-MR95 

Nostoc 
punctiforme PCC 
73102 

Babesia bovis T2Bo 
Archaeoglobus 
profundus DSM 
5631 

Methanoplanus 
petrolearius DSM 
11571 

Acidobacterium 
capsulatum ATCC 
51196 

Peptostreptococcu
s anaerobius 
653-L 

Caenorhabditis 
elegans 

Caldivirga 
maquilingensis 
IC-167 

Methanopyrus 
kandleri AV19 

Anaerolinea 
thermophila UNI-1 

Planctomyces 
limnophilus DSM 
3776 

Chlamydomonas 
reinhardtii 

Cenarchaeum 
symbiosum A 

Methanoregula 
boonei 6A8 

Bifidobacterium 
breve DSM 20213 

Prochlorococcus 
marinus str. MIT 
9515 

Cryptococcus 
neoformans var. 
grubii 

Desulfurococcus 
mucosus DSM 2162

Methanosaeta 
concilii GP6 

Bulleidia extructa 
W1219 

Rhodothermus 
marinus 
SG0.5JP17-172 

Cryptosporidium 
parvum Iowa II 

Ferroglobus 
placidus DSM 
10642 

Methanosalsum 
zhilinae DSM 4017 

Chlamydia 
trachomatis 

Spiroplasma 
melliferum KC3 

Dictyostelium 
discoideum 

Ferroplasma 
acidarmanus fer1 

Methanosarcina 
mazei Go1 

Chloracidobacteriu
m thermophilum B 

Staphylococcus 
aureus A6300 

Encephalitozoon 
cuniculi GB-M1 

Haladaptatus 
paucihalophilus 
DX253 

Methanosphaera 
stadtmanae DSM 
3091 

Chloroflexus 
aggregans DSM 
9485 

Thermodesulfatat
or indicus DSM 
15286 

Gallus gallus 
Halalkalicoccus 
jeotgali B3 

Methanospirillum 
hungatei JF-1 

Dehalogenimonas 
lykanthroporepelle
ns BL-DC-9 

Thermomicrobium 
roseum DSM 
5159 

Giardia lamblia 
ATCC 50803 

Haloarcula 
hispanica ATCC 
33960 

Methanothermobact
er 
thermautotrophicus 
str. Delta H 

Denitrovibrio 
acetiphilus DSM 
12809 

Thermotoga 
thermarum DSM 
5069 

Guillardia theta 
Halobacterium sp. 
NRC-1 

Methanothermococc
us okinawensis IH1 

Desulfurispirillum 
indicum S5 

Trichodesmium 
erythraeum 
IMS101 

Hydra 
magnipapillata 

Haloferax volcanii 
DS2 

Methanothermus 
fervidus DSM 2088 

Dictyoglomus 
turgidum DSM 
6724 

Verrucomicrobiu
m spinosum DSM 
4136 

Kluyveromyces 
lactis 

Halogeometricum 
borinquense DSM 
11551 

Methanotorris 
igneus Kol 5 

Elusimicrobium 
minutum Pei191 

Victivallis 
vadensis ATCC 
BAA-548 

Leishmania 
braziliensis MHOM 

Halomicrobium 
mukohataei DSM 
12286 

Natrialba magadii 
ATCC 43099 

Fibrobacter 
succinogenes 
subsp. 
succinogenes S85 
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Leishmania 
infantum JPCM5 

Halopiger 
xanaduensis SH-6 

Natrinema 
pellirubrum DSM 
15624 

Gemmatimonas 
aurantiaca T-27 

 

Leishmania major 
Haloquadratum 
walsbyi DSM 
16790 

Natronobacterium 
gregoryi SP2 

Geobacter 
metallireducens 
GS-15 

 

Neurospora crassa 
Halorhabdus 
tiamatea SARL4B 

Natronomonas 
pharaonis DSM 
2160 

Gloeobacter 
violaceus PCC 
7421 

 

Ostreococcus 
lucimarinus 
CCE9901 

Halorubrum 
lacusprofundi 
ATCC 49239 

Nitrosoarchaeum 
koreensis MY1 

Hydrogenobacter 
thermophilus TK-6 

 

Paramecium 
tetraurelia strain 
d4-2 

Haloterrigena 
turkmenica DSM 
5511 

Nitrosopumilus 
maritimus SCM1 

Idiomarina baltica 
OS145 

 

Physcomitrella 
patens 

Hyperthermus 
butylicus DSM 
5456 

Picrophilus torridus 
DSM 9790 

Ktedonobacter 
racemifer DSM 
44963 

 

Plasmodium 
falciparum 3D7 

Ignicoccus 
hospitalis KIN4/I 

Pyrobaculum 
calidifontis JCM 
11548 

Leptospira 
interrogans serovar 
Lai str. 56601 

 

Plasmodium yoelii 
yoelii str. 17XNL 

Ignisphaera 
aggregans DSM 
17230 

Pyrococcus 
horikoshii OT3 

Mariprofundus 
ferrooxydans PV-1 

 

Schizosaccharomyc
es pombe 

Korarchaeum 
cryptofilum OPF8 

Pyrolobus fumarii 
1A 

Mesorhizobium loti 
MAFF303099 

 

Tetrahymena 
thermophila 

Metallosphaera 
cuprina Ar-4 

Staphylothermus 
hellenicus DSM 
12710 

Neisseria elongata 
subsp. glycolytica 
ATCC 29315 

 

Theileria parva 
Methanobacterium 
sp. AL-21 

Sulfolobus islandicus 
L.S.2.15 

 
 

Trichomonas 
vaginalis G3 

Methanobrevibacter 
smithii DSM 2375 

Thermococcus 
gammatolerans EJ3 

 
 

Trypanosoma 
brucei 

methanocaldococcu
s infernus ME 

Thermofilum 
pendens Hrk 5 

 
 

Ustilago maydis 
Methanocella 
paludicola SANAE 

Thermoplasma 
acidophilum DSM 
1728 

 
 

Zea mays 
Methanococcoides 
burtonii DSM 6242 

Thermoproteus 
neutrophilus V24Sta

 
 

 
Methanococcus 
aeolicus Nankai-3 

Thermosphaera 
aggregans DSM 
11486 

 
 

 
Methanocorpusculu
m labreanum Z 

Vulcanisaeta 
distributa DSM 
14429 

 
 

 
Methanoculleus 
marisnigri JR1 
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Supplemental Figures 

 

 

 

Fig. S1 The ROC curves illustrating the overall performance of the CCPPI and the other 

frequency difference-based encoding schemes on the large-scale testing dataset composed of the 

BIOGRID positives and 0.9 million random negatives. All of the encodings were trained using 

the “DIP+MIPS+Random” dataset and the preliminarily optimized parameters. AA here stands 

for amino acid. 
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Fig. S2 The ROC curves illustrating the overall performance of the CCPPI and the other two 

encoding schemes on the large-scale testing dataset composed of the BIOGRID positives and 0.9 

million random negatives. All three encoding schemes were trained with the 

“DIP+MIPS+Random” dataset and the optimized parameters listed in Table S2. The 

meta-predictor was constructed by weighted summing of the decision value from each predictor. 

The weightings of CCPPI, CT encoding and AC encoding were 1, 0.9 and 0.2, respectively. 
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Fig. S3 Venn diagram showing the overlap of the predicted true positives by CCPPI and the 

other two encoding schemes at the 90% specificity level in the large-scale testing. The optimized 

parameters listed in Table S2 were used for SVM training of the three encoding schemes. 
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Fig. S4 Comparison of codon/codon pair frequency differences between PPIs and random ones. 

Redundant sequences in the datasets were removed by utilizing the CD-HIT tool to cluster 

sequences at 40% sequence identity cutoff. Compared with Fig. 1, the corrected p-values became 

less prominent (paired Wilcox’s test, p<110-6). But the conclusion that many codons and codon 

pairs are non-randomly used in PPIs remained unchanged. 
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Fig. S5 Venn diagram showing the overlap of the predicted true positives from the fruit fly 

dataset by CT encoding and three homology-dependent PPI prediction methods. See 

Supplemental Methods for details of these homology-dependent methods. 

 

 

 

 

 

Fig. S6 Venn diagram showing the overlap of the predicted true positives from the fruit fly 

dataset by AC encoding and three homology-dependent PPI prediction methods. See 

Supplemental Methods for details of these homology-dependent methods. 
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Fig. S7 The cumulative distribution of mutual information among pairs of actual and shuffled 

phylogenetic profiles of the fruit fly proteins. 
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