Can Simple Codon Pair Usage Predict Protein-Protein Interaction?

Yuan Zhou, Ying-Si Zhou, Fei He, Jiangning Song and Ziding Zhang

Electronic Supplemental Information

Supplemental Methods

The Supplemental Methods contain three sub-sections: 1) Statistical analyses of the difference of codon/codon pair frequency between interacting protein pairs; 2) Probing genomic factors that contribute to CCPPI's performance; and 3) Comparison of CCPPI and other methods in the fruit fly dataset.

Supplemental Tables

The Supplemental Tables contain the summary of three existing methods (Table S1), the optimized SVM parameters (Table S2), and the performance of encodings in various datasets (Table S3-S4). We also compared the performance of three sequence-based encodings and three homology-dependent methods in the fruit fly dataset (Table S5). The reference organisms for phylogenetic profile-based PPI prediction are shown in Table S6.

Supplemental Figures

The Supplemental Figures contain the ROC curves illustrating the performance of the simple sequence-based encodings (Fig. S1) and the performance of CCPPI, CT encoding, AC encoding and the meta predictor based on the optimized SVM parameters (Fig. S2). We also present the overlap of predicted true positives for different encodings/methods, either in the yeast dataset (Fig. S3) or in the fruit fly dataset (Fig. S5-S6). The results of the statistical analyses of the codon/codon pair usage differences between interacting protein pairs after filtering redundant sequences are also illustrated in Fig. S4. Finally, the cumulative distribution of mutual information among pairs of actual and shuffled phylogenetic profiles of the fruit fly proteins is shown in Fig. S7 as a rationale of mutual information cutoff for the phylogenetic profile method.

References

Supplemental Methods

5-10

2-4

11-16

17

Statistical analyses of codon/codon pair frequency differences between interacting protein pairs

We compared the differences of codon/codon pair frequency between 4,156 interacting protein pairs in the DIP yeast core dataset¹ and the randomly selected negative protein pairs. The latter are 19 times larger than the former. DIP positives were downloaded from the DIP database (http://dip.doe-mbi.ucla.edu/dip/Download.cgi). We searched for informative codon pairs whose frequency differences in the positives were significantly different from those in the negatives [either larger or smaller, according to Welch's t-test followed by Benjamini-Hochberg correction with a certain significance level cutoff (i.e., correted p-value = 0.05)]. In other words, a corrected p-value was calculated for each codon pair to describe if it was similarly used or dissimilarly used in PPIs, therefore informative in discriminating interacting protein pairs and non-interacting protein pairs. We searched informative codons in the same way.

A codon pair could be informative (preferably used in a non-random fashion among interacting protein pairs), either dependent or independent of non-random codon usage and non-random amino acid pair usage. We attempted to estimate the number of independent ones using permutated sequence sets. In a permutated sequence set, only synonymous codons within each coding sequence were shuffled. That is to say, we swapped each codon with one randomly selected synonymous codon (if existed) throughout the coding sequence. Therefore, the distribution of codon pair frequency between interacting protein pairs was altered after such shuffling, while that of codon frequency and amino acid pair frequency remained unchanged. We generated 1,000 permutated sets and collected codon pairs meeting either of the folowing two criteria in each dataset: 1) A codon pair was shown to be similarly used in interacting protein pairs by the test described in the above paragraph, and the permutation would result in a less similar codon pair usage (paired Student's t-test followed by Benjamini-Hochberg correction, p<0.05; 2) A codon pair was shown to be dissimilarly used in interacting protein pairs, and permutation would result in a more similar codon pair usage in interacting protein pairs (paired Student's t-test followed by Benjamini-Hochberg correction, p < 0.05). If a codon pair met one of the two criteria across at least 950 out of 1,000 permutated sets, this codon pair was treated as an informative one that was independent of both non-random codon usage and non-random amino

acid pair usage.

Probing genomic factors that contribute to CCPPI's performance

We compared true positive predictions of different encoding schemes in terms of multiple factors that measure various aspects of interacting protein pairs. The first factor was transcriptional co-expression, which was measured by the fraction of transcriptional co-expressed proteins during cell cycle.² Transcriptome data were downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/, accession number GSE4987). The mRNA expression profiles of 781 proteins from the BIOGRID dataset were believed to have significant fluctuations during cell cycle, i.e., they are listed among the top 1,000 periodically expressed genes (http://labs.fhcrc.org/breeden/cellcycle/). 1,258 PPIs among them were shown to be transcriptional co-expressed (i.e., the absolute Pearson's correlation coefficient is larger than 0.5). Similarly, there were 5,489 PPIs among 1,422 proteins co-expressed at the proteome level during yeast cell cycle, according to the protein expression profile³ retrieved from the PeptideAtlas database (http://www.peptideatlas.org/repository/publications/flory2005/). Finally, functional or subcellular localization similarities between interacting protein pairs were quantified by the RSS values⁴ described in the Materials and Methods section from main text and the original paper by Wu *et al.*⁴

Comparison of CCPPI and other methods in the fly dataset

We compared CCPPI with other types of methods, including interolog, domain-domain interaction and phylogenetic profile, in the fruit fly (*Drosophila melanogaster*) dataset. Fruit fly sequences were downloaded from the Ensembl database⁷ (http://nov2010.archive.ensembl.org/, version 60). In the case of alternatively spliced genes, the longest coding sequences were used. The known physical interactions in fruit fly and the positive predictions of the interolog method⁸ were downloaded from the Interolog Finder database (http://interologfinder.org/), while 150,000 randomly selected non-interacting protein pairs were used as negative benchmarks. The interolog method transferred PPIs from other species to the fruit fly orthologous protein pairs. PPIs were also predicted from 6,074 known domain-domain interactions curated in the iPfam database.⁹ More exactly, two fruit fly proteins were predicted to interact if each of them contained one of

the two known interacting domains, respectively. The Pfam domain annotation of each protein was downloaded from the Ensembl database.⁷

Finally, we predicted the fruit fly PPIs using the phylogenetic profile strategy proposed by Sun et al^{10} with modifications. This method predicted two proteins as interacting partners when they co-occurred/co-disappeared across a set of the reference genomes. We sampled a reference genome by randomly selecting one genome from each clade at certain level of the phylogenetic trees available at NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/Taxonomy/). We noted that there was a prominent unbalance between the total number of sequenced eukaryote genomes and that of sequenced non-eukaryote genomes. Therefore, level 6, level 5 and level 2 were applied to the reference genome sampling from eukaryotes, archaea and bacteria, respectively. As a result, 30 eukaryotes, 65 archaea and 39 bacteria genomes were selected as references (see Table S7 for the full list) and their RefSeq proteins were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/RefSeq/). Then we generated actual/shuffled phylogenetic profile, and calculated mutual information between each protein pairs' phylogenetic profiles according to Sun et al.¹⁰ A threshold of 0.15 was used to identify PPIs because none of shuffled profile pair could achieve such a high mutual information level (Fig. S7). We also removed PPIs between the paralogous proteins from fruit fly as described by Sun *et al.*¹⁰

Supplemental Tables

Table S1 Summary of related and previously published sequence-based PPI prediction methods.

Encoding	Algorithm	Main benchmarking dataset	Performance	Ref.
scheme	framework			
CT encoding	SVM with S	HPRD human positives + the	Accuracy=83.9%	Ref. ⁵
	kernel	equal number of human		
		homogeneous negatives ^a		
AC encoding	SVM with	DIP yeast positives + the	Accuracy=86.2%	Ref. ⁶
	RBF kernel	equal number of negatives		
		with different subcellular		
		localization		
Codon	Naive Bayes	MIPS yeast positives + about	AUC=0.845 ^b	Ref. ¹¹
frequency		1.4 million negatives with		
difference		different subcellular		
		localization		

^a The homogeneous negatives were randomly rewired pairs of positive proteins.

^b This AUC value was estimated from the ROC curve in the original paper.

Encoding scheme	<i>c</i> (cost parameter)	g (gamma parameter)
ССРРІ	64	0.015625
CT encoding	128	0.0625
AC encoding	256	0.0625

Table S2 The optimized SVM training parameters.

We optimized the SVM parameters by 10-fold cross-validation tests using a "DIP+Random" dataset. In particular, a heuristic strategy for searching the optimized parameters was employed. Namely, we started with $c=2^0$ and $g=2^{-10}$, and alternately increased or decreased the value of one parameter by two folds. If a better accuracy was achieved, we then continued to increase or decrease the values of the parameters until no further improvement was observed.

Table S3 Performance of CCPPI and the other two encoding schemes when evaluated on the

 "DIP+RSS Negative" datasets.

Encoding scheme	Accuracy (%)	Precision (%)	Sensitivity (%)	МСС
ССРРІ	90.2 ± 0.2	88.5 ± 0.3	92.4 ± 0.3	0.804 ± 0.002
CT encoding	81.3 ± 0.4	81.9 ± 0.5	80.4 ± 0.5	0.627 ± 0.008
AC encoding	73.5 ± 0.3	71.5 ± 0.4	78.2 ± 0.3	0.473 ± 0.006

The datasets comprise of interacting and randomly selected non-interacting protein pairs without any known similar functions or subcellular localizations. The 10-fold cross-validation tests were repeated five times by selecting different negative samples. The results are expressed as mean \pm standard deviation. The predictors were trained with the preliminarily optimized parameters.

Table S4 Performance of CCPPI and the other two encoding schemes on the"DIP+Homogenous" datasets.

Encoding scheme	Accuracy (%)	Precision (%)	Sensitivity (%)	MCC
ССРРІ	63.7 ± 0.5	66.2 ± 0.7	56.2 ± 1.4	0.278 ± 0.009
CT encoding	59.3 ± 0.4	59.9 ± 0.5	56.5 ± 0.8	0.186 ± 0.007
AC encoding	57.1 ± 0.2	57.6 ± 0.3	53.7 ± 1.4	0.142 ± 0.004

The datasets comprise of interacting and randomly selected non-interacting protein pairs through rewiring of interacting protein pairs. The 10-fold cross-validation tests were repeated five times by selecting different negative samples. The results are expressed as mean \pm standard deviation. The predictors were trained with the preliminarily optimized parameters.

Table S5 Performance of different methods/encodings in predicting fruit fly (*Drosophila melanogaster*) PPIs.

Method/Encoding	Cutoff	Sensitivity (%)	Specificity (%)
ССРРІ	0.39	15.6%	92.2%
CT encoding	0.68	17.7%	90.7%
AC encoding	0.68	33.0%	81.7%
Interolog	-	3.7%	99.9%
Domain-domain interaction	-	4.3%	99.5%
Phylogenetic profile	0.15	16.8%	91.1%

The dataset was composed of 26,545 interacting protein pairs and 150,000 randomly selected non-interacting protein pairs from the fruit fly genome. See Supplemental Methods for details. The cutoff values corresponding to the 90% specificity in the yeast dataset were used for CCPPI, the CT encoding and the AC encoding.

Eukaryotes	Archaea	Archaea	Bacteria	Bacteria
		(continue)		(continue)
Amphimedon queenslandica	Acidilobus saccharovorans 345-15	Methanohalobium evestigatum Z-7303	Acaryochloris marina MBIC11017	Nitrospira defluvii
Apis mellifera	Aeropyrum pernix K1	Methanohalophilus mahii DSM 5219	Acidaminococcus intestini RvC-MR95	<i>Nostoc</i> <i>punctiforme</i> PCC 73102
Babesia bovis T2Bo	Archaeoglobus profundus DSM 5631	<i>Methanoplanus petrolearius</i> DSM 11571	Acidobacterium capsulatum ATCC 51196	Peptostreptococcu s anaerobius 653-L
Caenorhabditis elegans	Caldivirga maquilingensis IC-167	Methanopyrus kandleri AV19	Anaerolinea thermophila UNI-1	Planctomyces limnophilus DSM 3776
Chlamydomonas reinhardtii	Cenarchaeum symbiosum A	Methanoregula boonei 6A8	Bifidobacterium breve DSM 20213	Prochlorococcus marinus str. MIT 9515
Cryptococcus neoformans var. grubii	Desulfurococcus mucosus DSM 2162	Methanosaeta concilii GP6	Bulleidia extructa W1219	Rhodothermus marinus SG0.5JP17-172
Cryptosporidium parvum Iowa II	Ferroglobus placidus DSM 10642	Methanosalsum zhilinae DSM 4017	Chlamydia trachomatis	Spiroplasma melliferum KC3
Dictyostelium discoideum Encephalitozoon cuniculi GB-M1	Ferroplasma acidarmanus fer1 Haladaptatus paucihalophilus DX253	Methanosarcina mazei Go1 Methanosphaera stadtmanae DSM 3091	Chloracidobacteriu m thermophilum B Chloroflexus aggregans DSM 9485	Staphylococcus aureus A6300 Thermodesulfatat or indicus DSM 15286
Gallus gallus	Halalkalicoccus jeotgali B3	Methanospirillum hungatei JF-1	Dehalogenimonas lykanthroporepelle ns BL-DC-9	<i>Thermomicrobium</i> <i>roseum</i> DSM 5159
<i>Giardia lamblia</i> ATCC 50803	Haloarcula hispanica ATCC 33960	Methanothermobact er thermautotrophicus str. Delta H	Denitrovibrio acetiphilus DSM 12809	Thermotoga thermarum DSM 5069
Guillardia theta	Halobacterium sp. NRC-1	Methanothermococc us okinawensis IH1	Desulfurispirillum indicum S5	Trichodesmium erythraeum IMS101
Hydra magnipapillata	Haloferax volcanii DS2	Methanothermus fervidus DSM 2088	Dictyoglomus turgidum DSM 6724	Verrucomicrobiu m spinosum DSM 4136
Kluyveromyces lactis	Halogeometricum borinquense DSM 11551	Methanotorris igneus Kol 5	Elusimicrobium minutum Pei191	Victivallis vadensis ATCC BAA-548
Leishmania braziliensis MHOM	Halomicrobium mukohataei DSM 12286	Natrialba magadii ATCC 43099	Fibrobacter succinogenes subsp. succinogenes S85	

Table S6 The list of reference genomes used in the phylogenetic profile method.

Leishmania infantum JPCM5	Halopiger xanaduensis SH-6	Natrinema pellirubrum DSM 15624	Gemmatimonas aurantiaca T-27
Leishmania major	Haloquadratum walsbyi DSM 16790	Natronobacterium gregoryi SP2	Geobacter metallireducens GS-15
Neurospora crassa	Halorhabdus tiamatea SARL4B	Natronomonas pharaonis DSM 2160	Gloeobacter violaceus PCC 7421
<i>Ostreococcus lucimarinus</i> CCE9901	Halorubrum lacusprofundi ATCC 49239	Nitrosoarchaeum koreensis MY1	Hydrogenobacter thermophilus TK-6
<i>Paramecium tetraurelia</i> strain d4-2	Haloterrigena turkmenica DSM 5511	Nitrosopumilus maritimus SCM1	Idiomarina baltica OS145
Physcomitrella patens	Hyperthermus butylicus DSM 5456	Picrophilus torridus DSM 9790	Ktedonobacter racemifer DSM 44963
Plasmodium falciparum 3D7	Ignicoccus hospitalis KIN4/I	Pyrobaculum calidifontis JCM 11548	<i>Leptospira interrogans serovar</i> Lai str. 56601
Plasmodium yoelii yoelii str. 17XNL	Ignisphaera aggregans DSM 17230	Pyrococcus horikoshii OT3	Mariprofundus ferrooxydans PV-1
Schizosaccharomyc es pombe	Korarchaeum cryptofilum OPF8	Pyrolobus fumarii 1A	<i>Mesorhizobium loti</i> MAFF303099
Tetrahymena thermophila	Metallosphaera cuprina Ar-4	<i>Staphylothermus hellenicus</i> DSM 12710	<i>Neisseria elongata</i> subsp. glycolytica ATCC 29315
Theileria parva	Methanobacterium sp. AL-21	Sulfolobus islandicus L.S.2.15	
Trichomonas	Methanobrevibacter	Thermococcus	
vaginalis G3	smithii DSM 2375	gammatolerans EJ3	
1 rypanosoma brucci	<i>methanocaldococcu</i> s infarnus ME	Thermofilum	
Ustilago maydis	Methanocella paludicola SANAE	Thermoplasma acidophilum DSM 1728	
Zea mays	Methanococcoides burtonii DSM 6242	Thermoproteus neutrophilus V24Sta	
	<i>Methanococcus</i> <i>aeolicus</i> Nankai-3	Thermosphaera aggregans DSM 11486	
	Methanocorpusculu m labreanum Z	Vulcanisaeta distributa DSM 14429	
	Methanoculleus marisnigri JR1		

Supplemental Figures

Fig. S1 The ROC curves illustrating the overall performance of the CCPPI and the other frequency difference-based encoding schemes on the large-scale testing dataset composed of the BIOGRID positives and 0.9 million random negatives. All of the encodings were trained using the "DIP+MIPS+Random" dataset and the preliminarily optimized parameters. AA here stands for amino acid.

Fig. S2 The ROC curves illustrating the overall performance of the CCPPI and the other two encoding schemes on the large-scale testing dataset composed of the BIOGRID positives and 0.9 million random negatives. All three encoding schemes were trained with the "DIP+MIPS+Random" dataset and the optimized parameters listed in Table S2. The meta-predictor was constructed by weighted summing of the decision value from each predictor. The weightings of CCPPI, CT encoding and AC encoding were 1, 0.9 and 0.2, respectively.

Fig. S3 Venn diagram showing the overlap of the predicted true positives by CCPPI and the other two encoding schemes at the 90% specificity level in the large-scale testing. The optimized parameters listed in Table S2 were used for SVM training of the three encoding schemes.

Fig. S4 Comparison of codon/codon pair frequency differences between PPIs and random ones. Redundant sequences in the datasets were removed by utilizing the CD-HIT tool to cluster sequences at 40% sequence identity cutoff. Compared with Fig. 1, the corrected p-values became less prominent (paired Wilcox's test, $p<1\times10^{-6}$). But the conclusion that many codons and codon pairs are non-randomly used in PPIs remained unchanged.

Fig. S5 Venn diagram showing the overlap of the predicted true positives from the fruit fly dataset by CT encoding and three homology-dependent PPI prediction methods. See Supplemental Methods for details of these homology-dependent methods.

Fig. S6 Venn diagram showing the overlap of the predicted true positives from the fruit fly dataset by AC encoding and three homology-dependent PPI prediction methods. See Supplemental Methods for details of these homology-dependent methods.

Fig. S7 The cumulative distribution of mutual information among pairs of actual and shuffled phylogenetic profiles of the fruit fly proteins.

References

- 1 I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim and D. Eisenberg, *Nucleic Acids Res.*, 2002, **30**, 303-305.
- 2 T. Pramila, W. Wu, S. Miles, W. S. Noble and L. L. Breeden, Genes Dev., 2006, 20, 2266-2278.
- 3 M. R. Flory, H. Lee, R. Bonneau, P. Mallick, K. Serikawa, D. R. Morris and R. Aebersold, *Proteomics*, 2006, 6, 6146-6157.
- 4 X. Wu, L. Zhu, J. Guo, D. Y. Zhang and K. Lin, Nucleic Acids Res., 2006, 34, 2137-2150.
- 5 J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li and H. Jiang, *Proc. Natl. Acad. Sci. U. S. A.*, 2007, **104**, 4337-4341.
- 6 Y. Guo, L. Yu, Z. Wen and M. Li, Nucleic Acids Res., 2008, 36, 3025-3030.
- 7 P. J. Kersey, D. Lawson, E. Birney, P. S. Derwent, M. Haimel, J. Herrero, S. Keenan, A. Kerhornou, G. Koscielny, A. Kahari, R. J. Kinsella, E. Kulesha, U. Maheswari, K. Megy, M. Nuhn, G. Proctor, D. Staines, F. Valentin, A. J. Vilella and A. Yates, *Nucleic Acids Res.*, 2010, **38**, D563-D569.
- 8 A. M. Wiles, M. Doderer, J. Ruan, T. T. Gu, D. Ravi, B. Blackman and A. J. Bishop, *BMC Syst. Biol.*, 2010, 4, 36.
- 9 R. D. Finn, M. Marshall and A. Bateman, *Bioinformatics*, 2005, **21**, 410-412.
- 10 J. Sun, J. Xu, Z. Liu, Q. Liu, A. Zhao, T. Shi and Y. Li, *Bioinformatics*, 2005, **21**, 3409-3415.
- 11 H. S. Najafabadi and R. Salavati, Genome Biol., 2008, 9, R87.