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Supplementary Information 1: Graphical and mathematical
representation of model 1/, to M; and model variants.

kf2 kb5 | kf5

{L kf3 | kb3 \
14 - actR_IL _ acR_IL_(§HE8
ol =B “
kfe

IL
() frse) {2

kf7

/

A A

kb1 | kf1

v }

actR_. :111 actR_IL.

Figure S1: Graphical representation of the initial model. Protein species are depicted as colored rectangles. Arrows
between the protein species describe association or dissociation reactions, which follow mass action kinet-
ics. The names of kinetic constants are shown next to the corresponding reaction arrows. A mathematical
representation of this model is given in Table S1.
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Figure S2: Graphical representation of model M;. The same notation as in Fig. S1 is used. In contrast to My the
binding of IL-6 to the receptor has been changed. Model M is extended for the two receptor subunits gp80
and gp130 (see red dotted circle), which have previously been integrated in one species (R). To activate the
pathway in the new model, first a gp80-IL-6 complex needs to be formed (highlighted in yellow), which
subsequently binds to gp130. Removed parts from the previous model are shown in gray. A mathematical
representation of this model is given in Table S2.
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Figure S3: Graphical representation of model M5. The same notation as in the previous figures is used. Model M,
differs from the previous model M; in assuming identical kinetic constants for STAT (or SHP2) reactions
with the receptor, regardless of whether the receptor is in complex with IL-6 or not. The changed parameter
names are depicted in bold letters. A mathematical representation of this model is given in Table S3.
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Figure S4: Graphical representation of model M3. The same notation as in the previous figures is used. Two changes to
model M, result in M3. First, the complex formation between SHP2 and active receptor species (actGp130
or actR_IL) has been simplified. The activated receptors now phosphorylate SHP2 in a pseudo first order
reaction (see reactions marked with a red 1), in which no complex needs to be formed (see gray model
parts). Note that pseudo first order reaction arrows end in circles. This simplification necessitates changes
for the SHP2-induced receptor inactivation (see reaction arrows marked with a red 2). Second, STAT is
modeled as monomer and only binding of a second STAT to the receptor induces the dissociation of the
active dimer actSTAT (see reaction marked with a red 3). A mathematical representation of this model is
given in Table S4.
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Figure S5: Graphical representation of model M,. The same notation as in the previous figures is used. Two major
simplification lead from M3 to My. First, we assume that in the IL-6-induced part of the model, SHP2 is
not able to inactivate the IL-6-bound activated receptor. Consequently, we have removed this part from the
model (see model part marked with a red 1). By this we can model the IL-6-induced receptor activation
with only one reaction (bold reaction arrow with kinetic constant k2). Second, we model the SHP2-induced
inactivation of the IL-6-free activated receptor (actGp130) with a pseudo first order reaction (bold reaction
with kinetic constant k3new). By this we can neglect the complex formation between SHP2 and actGp130
(grayed part labeled with red 2). A mathematical representation of this model is given in Table SS5.
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Figure S6: Graphical representation of model Ms5. The same notation as in the previous figures is used. In analogy
to previous changes, we neglect the complex formation between activated receptor and STAT (see grayed
parts) and replace this part with a pseudo first order reaction (see bold reaction arrows with kinetic constant
k7). A mathematical representation of this model is given in Table S6.
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Figure S7: Graphical representation of model Mg. The same notation as in the previous figures is used. In contrast to
M5 we assume a positive feedback of pSHP2 on the phosphorylation of SHP2. This has been necessary to
resolve discrepancies between model output y3 and the pSHP2 data. A mathematical representation of this
model is given in Table S7.
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Figure S8: Graphical representation of model M. The same notation as in the previous figures is used. In contrast
to Mg we now assume that SHP2 (or STAT) are activated by the activated receptor species (actGp130 and
actR_IL) via reactions with different kinetic constants. The changed kinetic constants are depicted in bold
letters. A mathematical representation of this model is given in Table S8.
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Supplementary Information 2: Experimental validation of model
assumption (4).
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Figure S9: Validation of model assumption (2)

To validate the assumption (4) that the phosphorylation of Jak serves as indicator for receptor activation, HEK-gp80
cells were stimulated with IL-6 (0.95 nM) for up to 15 minutes. Phosphorylation of gp130 was analyzed by immuno-
precipitation of gp130 and subsequent immunoblotting of the precipitates. Phosphorylated gp130 was then detected
with specific antibodies against (p)Y. Detection of total gp130 served as loading control. For detection of phospho-
rylated Jak1 whole cell lysates were analyzed by immunoblotting using specific antibodies against (p)Jakl, Jakl and
HSP70. Detection of Jak1 and HSP70 served as loading control. Figure S9 A and B show representative immunoblot
analysis. Maximum intensities have been set to 100 in every independent experiment. Figure S1 C presents mean +
SD of the densitometric analysis of » = 3 independent experiments.

IL-6-induced phosphorylation of gp130 and Jak1 do not differ in the first 15 minutes after stimulation, therefore,
model assumption (4) is valid.
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Materials and Methods
Immunoprecipitation

For immunoprecipitation lysates were incubated with 1ug of antibody gp130 (M20, Santa Cruz technologies, Santa
Cruz, CA) at 4°C over night gp130 (M20). Subsequently, immunocomplexes were isolated using protein G dynabeads
(Life technologies, Darmstadt, Germany) according to manufacturer‘s description. Phosphorylation of gp130 was
detected with specific antibodies against (p)Y (pY99, Santa cruz technologies, Santa Cruz, CA, USA). The other
immunoblots were performed as described in Material and Methods in the main text.
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Supplementary Information 3: Experimental validation of model
assumption (11).
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Figure S10: Validation of model assumption (11)

To validate model assumption (11) that the amounts of gp130, Jakl, STAT3 and SHP2 do not change in the first
15 minutes of IL-6 stimulation, HEK-gp130 cells were stimulated for up to 15 minutes with IL-6 (0,95 nM). gp130
was analyzed by immunoprecipitation of gp130 and subsequent immunoblotting of the precipitates, whereas (p)Jakl,
Jak1, (p)STAT3, STAT3, (p)SHP2, SHP2, HSP70 were analyzed by immunoblotting aliquots of whole cell lysates.
Detection of the phosphorylated species served as stimulation control. Detection of HSP70 served as loading control.
Figure S10 A, C, and E present representative immunoblot analysis for gp130, Jakl and STAT3/SHP2 respectively.
Maximum intensities have been set to 100 in every independent experiment. Figure S10 B, D, F, and G present
densitometric analysis of n = 3 independent experiments for gp130, Jakl, STAT3 and SHP2, respectively.

The amounts of unphosphorylated species gp130, Jak1l, STAT3 and SHP2 do not change in the first 15 minutes after
stimulation, therefore, model assumption (11) is valid.
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Supplementary Information 4: Experimental validation of model
assumption (12).
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Figure S11: Validation of model assumption (12)

To validate model assumption (12) that SOCS3 is not expressed in the first 15 minutes after IL-6 stimulation, HEK-
gp80 cells were stimulated for the indicated time periods with IL-6. After isolation of total RNA SOCS3 mRNA
expression was analyzed by RT-qPCR. Figure S11 presents the mean + SD of n = 3 independent experiments.

IL-6 does not induce the expression of SOCS3 mRNA within 15 minutes, whereas a 60 minute stimulation results
in a strong synthesis of SOCS3 mRNA, therefore, model assumption (12) is valid.

Materials and Methods
Real time PCR (RT-qPCR)

Total RNA was isolated using the RNeasy Kit (Qiagen, Hilden,Germany) according to manufacturer’s instructions.
500 ng of RNA was reverse transcribed into cDNA with Omniscript (Qiagen, Hilden, Germany) using random
hexameric primers according to manufacturer’s instructions. Tagman gene expression assays for human SOCS3
(Hs02330328_s1) and human HPRT: (Hs99999909_m1) were obtained from Applied Biosystems (Carlsbad, CA,
USA) and PCR was performed using qPCR Mastermix plus (Eurogentec, Cologne, Germany). The PCR reaction was
done in a final volume of 10 ul containing 2 ul cDNA and 1 pl Tagman gene expression assay solution. After denat-
uration for 15 minutes at 94°C amplification was performed in 40 cycles (15 s at 94°C, 60 s at 60°C) on a Rotorgene
(Qiagen). The gene of interest and the housekeeping gene were amplified in duplicates. The quantification of gene
expression was calculated using the Pfaffl method [1].
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Supplementary Information 5: Quantification of the concentration of
gp130 and gp80.
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Figure S12: Quantification of receptor expression.

The amount of gp180 and gp130 was analyzed using a bead-based FACS assay. Figure S12 A shows the FACS analysis
of HEK-gp80 cells with a directly PE (Phycoerithrin)-coupled antibody against gp130 (solid line). Control cells have
not been stained with anti-gp130 antibodies (dashed line). Figure S12 B and C present the linear dependency of PE-
fluorescence intensity with PE-amount on Quantibride beads. The amount of gp130 and gp80 on the cell membrane
was calculated as 2.66 nM and 266 nM, respectively (see Figure S12 D).

Materials and Methods
Quantification of membrane-associated receptors

For quantification antibodies were directly coupled to PE using the phycolink PE conjugation kit (Prozyme, San Le-
andro, CA, USA) according to manufacturer‘s description. Antibody conjugates were purified using size exclusion
chromatography and the ratio of PE/antibody was calculated by Lambert-Beer law. QuantiBRITE beads (BD, Heidel-
berg, Germany) were used to determine the amount of PE/cell. Cells and beads were analysed using the FACSCantoll
(BD, Heidelberg, Germany). Data were analyzed using flowjo (Treestar, Ashland, OR, USA)
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Supplementary Information 6: Quantification of the concentration of
STAT3, (p)STAT3, SHP2, and (p)SHP2.
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Figure S13: Quantification of SHP2, (p)SHP2, STAT3, and (p)STAT3.

The concentration of (p)STAT3, STAT3, (p)SHP2 and SHP2 was analyzed by quantitative immunoprecipitation us-
ing recombinant proteins as calibrators. Absolute amounts of (p)SHP2 and (p)STAT3 were calculated based on the
precipitation of both species after stimulation with IL-6 (0,95 nM) for 6 minutes. Figure S13 A and D present represen-
tative immunoblots for STAT3 and SHP2, respectively. Representative standard curves for the calculation of absolute
amounts of STAT3 and SHP2 are shown in Figure S13 B and E. Efficiency of immunoprecipitation was controlled
in an aliquot of the lysate before and after immunoprecipitation Figure S13 C and F. Based on these analyses the
concentration of STAT3 and SHP2 were calculated as 216 & 62 nM and 222 + 62 nM. The stimulation with IL-6 (6
minutes, 0,95 nM) resulted in 117 &= 32 nM (p)STAT3 and 67 & 16 nM (p)SHP2. Mean & SD are basedonn =3 —5
independent experiments.

Materials and Methods
Quantification of intracellular species

For immunoprecipitation lysates were incubated with 1ug of antibody at 4°C over night (SHP2 (C18), STAT3 (C20),
gp130 (M20)(Santa Cruz technologies, Santa Cruz, CA); pSTAT3-Y705, pSHP2-Y542 (New England Biolabs, Frank-
furt am Main, Germany)). Subsequently, immunocomplexes were isolated using protein G dynabeads (Life technolo-
gies, Darmstadt, Germany) according to manufacturer ‘s description. Efficiency of immunoprecipitation was controlled
in an aliquot of the lysate before and after immunoprecipitation and taken into account for the calculation of the con-
centration. For quantification recombinant GST-tagged proteins containing the epitope of the corresponding detection
antibody were used (GST-STAT3 (aa 670-770), abnova, Taipei, Taiwan), GST-SHP2-SH2 tandem domains (isolated
from e. coli). We estimated the cell volume to be 500 fl based on the average cell diameter of trypsinized cells.
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Supplementary Information 7: Analysis of (p)STAT3 and (p)SHP2 in
single cells.
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Figure S14: Analysis of (p)STAT3 (A) and (p)SHP2 (B) in single cells

To analyze if the cells react homogeneously to a stimulation with IL-6 the IL-6-induced phosphorylation of STAT3
and SHP2 was analyzed by intracellular FACS analysis. Phosphorylation of Jak1 could not be detected in intracellular
FACS analysis (data not shown). HEK-gp80 cells were stimulated with a 6 minutes pulse of 0.95 nM IL-6 and
fixed and permeabilised at the indicated time points. Phosphorylated STAT3 and SHP2 respectively were detected
with specific antibodies against (p)STAT3 (A) and (p)SHP2 (B) and fluorescent secondary antibodies. In Figure S14
the fluorescence intensity is plotted at the x-axis,whereas the number of cells is plotted at the y-axis. To achieve a
better comparability four time points (0,5,10,15 min) are plotted in one diagram. The background fluorescence of
unstimulated cells is represented by dashed lines and vertical black lines. The phosphorylation of STAT3 and SHP2
rises within the first 5 minutes of stimulation and reaches a plateau at 10 minutes. The time courses of STAT3 and
SHP2 phosphorylation are comparable between immunoblot (see Fig. 2 E and G) and intracellular FACS analysis
shown here. In addition the FACS analysis shows that both STAT3 and SHP2 are homogeneously phosphorylated and
that no subpopulations of cells with diverse phosphorylation patterns exist. Therefore, we conclude that the results
obtained by immunoblotting do not represent an average of different subpopulations of cells but a good measure for
the response of single cells.
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Materials and Methods
Intracellular FACS Analysis

For intracellular FACS analysis cells were detached with PBS/EDTA (1:100) from cell culture dishes and immediately
fixed with 2% paraformaldehyde (30 minutes, room temperature). Cells were washed twice in PBS containing 5%
FCS and subsequently permeabilized with icecold 90% methanol (30 minutes). Cells were washed again and incubated
with antibodies raised against (p)STAT3-Y705 and (p)STAT3-Y542 (New England Biolabs) (4°C). After 1h cells were
washed again and subsequently stained with R-phycoerithrin-conjugated secondary antibody (Dianova, Hamburg,
Germany) for 30 minutes. Cells were analyzed using the FACSCantoll (BD, Heidelberg, Germany). Data were
analyzed using flowjo (Treestar, Ashland, OR, USA).
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Supplementary Information 8: Addition of second experiment for the
first round of model refinement.
Note that no species in the Jak/STAT pathway is phosphorylated in the absence of IL-6 (see Figure 2 A, C, and F),

such that the pathway is inactive. Therefore, we included an additional experiment, which consists of the following
input/output specification:

u(t)=0 t; = 15 min
y2,1(t1) = gp130(to) Y2,2(t1) = SHP2(to) Y2,3(t1) = STAT(to)
Y24 tl) = pSHPZ(to) y275(t1) = actGp13O(t0) yz’ﬁ(tl) = aCtSTAT(to).

Note that y is extended for an additional subscript, which allows to distinguish model outputs of different experiments.
The measurements ¢ ; ... 92,6, Which correspond to the model outputs described in the equations above, represent
the concentration of key species in the steady state —i.e. before stimulation. Since the steady state values of these key
species have already been measured for determining the model’s initial values, no additional measurements needed
to be performed for this new experiment. Adding this experiment enforces that the six measured species remain in
their initial steady state after 15 minutes. Parameter estimates, which violate the steady state will be penalized during
parameter estimation.
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Supplementary Information 9: )/, fails to describe data of IL-6 bound
receptors.
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Figure S15: Discrepancy between the best fit of model M to the data of IL-6-bound receptors. The best fit of M
resulted in a x? value of 84.6 with a p-value of 0.0022 and needed to be rejected. Model output %3, which
describes the IL-6-bound receptor species, is mostly responsible for the model/data mismatch. The graph
shows the model output for y3 (solid line) and the corresponding data points (black dots) over time.
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Supplementary Information 10: Optimal experimental design.
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Figure S16: Results of optimal experimental design for different input pulses. In each graph, the z-axis shows the
value of the D-optimality criterion, the x-axis specifies the time point for IL-6 removal and the y-axis
defines the initial concentration of IL-6. The graphs (A to E) differ with respect to the downregulated

SHP?2 initial values.
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Supplementary Information 11: Approximation of the standard
deviation of the second data set using the initial data set.

Whereas the initial data set consists of the mean value of repeatedly reproduced experiments (n = 3 — 5), the second
data set consist of only one repetition, due to the limitations of the RNA interference technology. Consequently, the
standard deviation of the second data set cannot be estimated from repeated measurements. Therefore, we use the
largest average error of the initial data set (= 40%) as the basis for an approximation of the standard deviation for
the second data set. To reflect the fact that we have less confidence in the new experiment, compared to the well
reproduced (n = 3-5) initial experiments, we doubled the largest average error for each output.
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Supplementary Information 12: Boundaries for actGp130_0.
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Figure S17: Visualization of dyjak. dpjak represents a lower bound for the real difference between the initial (F3,4(t0))
and the maximal measurement (3 4 (tmax)) Of pJAK, because the minimal measurement is increased, while
the maximal measurement value is decreased by the corresponding standard deviation 03 4 ¢, and 03 4,1,
respectively.

After fitting the model parameters to both the initial and the second data set, the resulting model predicts the pJAK
concentration to be constant over time, thus not representing the increase of pJAK as shown by the data. This effect
results from the fact that the estimated initial value for actGp130_0 reaches its upper bound i.e. the value of gp130,,,;.
Consequently, pJAK cannot further increase from its initial value, since all receptors are already activated. To be able
to describe the increase of pJAK over time — as existent in the data — we established an upper estimation bound for
actGp130_0 below gp130y,,,;- By this the pJAK concentration is forced to rise at least for the difference between this
upper estimation bound and gp130y,,,;. We argue that a simulated time course of the pJAK concentration should be
able to increase at least by a value equal to the difference between the initial measurement (g3 4(t0)) and the maximal
measurement of pJAK (§3 4(tmax)). We calculate this difference (dpiak) as

dpJAK = (ﬂ3,4 (tmax) - U3,4,tmax) - (g3,4(0) + 03,4,t0) with tpax = al“gltﬂax 173,4(7?),

where 03 4 4, and 03 44, denote the standard deviation of the 3 4 (o) and g3 4 (¢max ), respectively. For a visualization
of dyjak see Figure S3. Note, that dpjax can be interpreted as a lower bound for the real difference between the
initial and the maximal measurement of pJAK, because the minimal measurement is increased, while the maximal
measurement value is decreased by the corresponding standard deviation. By determining the ratio of dyjak to the
initial measurement of pJAK, we get a measure of how much increase from an initial value should be at least allowed.
The resulting ratio for a minimal increase amounts to approximately 30%. Consequently, the upper estimation bound
of actGp130_0 should amount to 70% of gp130y,,, to allow the previously calculated minimal increase of 30%.
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Supplementary Information 13: ) is not able to adequately
describe (p)SHP2 data.
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Figure S18: Model-data discrepancy for (p)SHP2 measurements from the first experiment. Measured values are rep-
resented by bold dots, while the model prediction of Mj5 is represented by the dotted line. The model
underestimates the SHP2 phosphorylation as given by the data in the first 15 minutes.
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Supplementary Information 14: ); with positive actR_IL feedback
fails in providing biologically reasonable trajectories

Model M7 with positive pSHP2 feedback replaced by positive actR_IL feedback — subsequently denoted as Mg —
results in a reasonable fit, but fails in providing biologically sound trajectories. We discuss the deficiencies of Mjg
below.

Mg predicts that in the second experiment significantly more actGp130 than actR_IL exists, even in the presence
of IL-6. The amount of actGp130 remains above 73%, while the amount of actR_IL stays below 8% of the total
gp130 amount at all measurement times of the second experiment (see right graph in Figure part A of S19). Since it
is known that IL-6 binding to the receptor is critical for pathway activation [2], the assumption that significantly more
IL-6-free actGp130 exists during IL-6 stimulation than IL-6-bound actR_IL, is biologically not feasible. The reason
for the abundance of actGp130 in the prediction of Mg lies in the high values of the estimate of actGp130_0 (73%
of the total amount of gp130). Despite this high initial value of actGp130, the measurement of pJAK, which reflects
the amount of activated receptor, starts at a rather small value (= 10% of the total amount of gp130). Still, the model
achieves an acceptable fit of the pJAK measurement, because the scaling factor for the pJAK measurement in the
second experiment is 30 times smaller compared to the initial experiment (data not shown). Both measurements have
been carried out on different WBs, such that different scaling factors are possible. However, as the same AB has been
used, a 30-fold difference in measurement scaling is unlikely. Because of the high initial concentration of actGp130
and the small scaling factor of the pJAK measurement in the second experiment, the visually noticeable dynamics of
receptor activation are not reflected by the model anymore (see Figure part B of S19). Model Mg rather assumes a
near constant level of active receptor, which is dominated by actGp130.

A Initial experiment Second experiment B Fit to second experiment
(6 min. IL-6 pulse) (3 min. IL-6 pulse + siRNA)
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Figure S19: Properties of model Mg. The two graphs of part A depict the trajectories of actR_IL and actGp130 for
the initial and the second experiment, respectively. The graph in part B of the figure shows the model fit
to the pJAK measurement of the second experiment.

In summary, we reject Mg for the following reasons:

1. Although IL-6 is the stimulating agent, the IL-6-induced pathway activation is only of minor importance in Mg.

2. The difference between the scaling factors of the pJAK measurement of the intial and the second experiment is
too large in Mg.

3. The dynamic increase of the pJAK measurement in the second experiment is not represented sufficiently by Ms.
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