
Supplementary materials

Table S1. Identified significantly changed metabolites between the RA cold pattern and the RA heat pattern.

Metabolite	Fold change ^a (heat/cold)	p^{b}	Data origin
Glycochenodeoxycholic acid ^c	2.0	0.025	LC/MS
PC 1-acyl 32:1 ^c	1.4	0.03	LC/MS
PC 1-acyl 32:0°	1.2	0.009	LC/MS
PC 1-acyl 34:1 ^c	1.1	0.004	LC/MS
PC 1-acyl 38:5 ^c	0.8	0.049	LC/MS
Urea ^c	0.8	0.016	GC/MS
Proline	1.4	0.049	GC/MS
FFA C18:0	0.9	0.045	GC/MS

^a Fold change was calculated from the mean values of each group. ^b p values were calculated from the Student's t-test. ^c Potential biomarkers were selected based on the threshold of VIP>1.0 and p<0.05.

Figure S1 PCA score plots based on the data from all samples. (a) PCA model generated from LC/MS (8 components, $R^2X=0.60$), (b) PCA model generated from GC/MS (6 components, $R^2X=0.61$). (\spadesuit): QCs, (\triangle): healthy controls, (\circ): RA patients.