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Yeast microarray gene-expression data-set 

The compendium  of microarray experiments used to derive proximity and relevance networks includes publicly 
available data obtained from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)1. Initially, a total of 
1340 microarray experiments (Affymetrix Yeast Genome S, 98, 9.335 probe sets) were downloaded. In addition, the 
quality was ensured for each individual microarray experiment through a two-stage procedure: First, visual 
inspection of box plots of raw positive match data and RMA residuals of RMA-normalized data by using the RMA 
express program was performed. CEL files exhibiting either artefacts on the RMA residual plots or visible 
deviations from the majority on the positive match box plots were removed from further analysis. Second, 
automated outlier detection, available from the R Bioconductor package arrayQualityMetrics2, was performed by 
conducting (1) between-array comparisons based on distance between arrays and Principal Component Analysis, (2) 
inspection of array-wide probe intensity distributions by boxplots and density plots, (3) variance-mean dependence 
of each array, and (4) individual array quality assessment by MA plots.  From these analyses, 1176 microarrays were 
retained, which were finally normalized using quantile normalization via the simpleAffy R package. 

Gene function prediction using network-based majority voting 

In order to analyse whether the degree of incompleteness of biological annotation influences the performance of 
guilt-by-association (GBA) based network-driven gene function prediction, we employ the aforementioned yeast 
transcriptomics dataset after quality control. Further, one proximity network and one relevance network were 
constructed under the constraint that they are of same density, i.e., the networks contain the same number of edges. 
The edges were obtained by using the Pearson’s correlation coefficient, quantifying the similarity between gene 
profiles from the 1176 experiments. For both networks, the density is 0.006; it corresponds to a threshold 𝜏 = 0.62 
for the correlation coefficient in case of the relevance network and a cut-off of 55 for the highest reciprocal rank in 
case of the proximity network. Both networks are comprised of the same set of 4161 nodes, representing genes 
annotated with both GO-MF (molecular function, 4301 genes) or GO-BP terms (biological process, 4929) of the 
gene-ontology GO3. 
 The influence of successively sparser annotation is simulated by artificially removing different fractions of those 
4161 annotated genes, so that the percentage of unannotated genes varies between 10% and 90%. For each 
percentage of missing annotation, we randomly sampled with uniform probability a given fraction of genes and 
treated them as unannotated. For the set of unannotated genes, we employed a majority voting network-based 
algorithm for automated annotation via the GBA principle. For each of the two sub-ontologies – GO-MF and GO-
BP, we derived predictions separately. Furthermore, for every node, we considered all of its neighbours in the 
majority voting.  
 For the validation of the obtained predictions, we compared the highest scoring prediction (i.e., the one with the 
most votes) and the third highest scoring prediction with the original annotation. This validation strategy is based on 
the observation that 50% of the currently annotated genes are annotated with 3 or more terms. A validation of only 
the first term is consequently not optimally reflecting the structure of Yeast gene annotation. Additionally, correctly 
inferred predictions up to the third term allow for a more differential characterization of an unannotated gene.  
 Furthermore, to reduce issues related to deriving a trivial or less specific annotation which corresponds to the root 
nodes within the hierarchy of GO terms, we removed terms the 10 terms with the lowest information content4 (cf. 
Material and Methods in the main text). An example of terms exhibiting a low information content are within the 
GO-BP sub-ontology ‘biological_process’ (GO:0008150), i.e. the root term or ‘transport’ (GO:0006810). For GO- 
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MF, examples of removed terms include ‘binding’ (GO:0005488)  and, again, the root node ‘molecular_function’ 
(GO:0003674). Note, that more specific terms corresponding to higher information content values are retained. 
These include, for instance, the children of the term ‘binding’, ‘secretion’ (GO:0046903) and ‘ion transport’ 
(GO:0006811). 
 Within the automated process of gene-function prediction by majority voting, we repeated the predictions for each 
fraction of un-annotated genes 1000 times, and, in every iteration, a different set of randomly unannotated genes was 
sampled.  

Characterizing degree distributions observed in proximity and relevance 
networks 

As shown in the main material (section ‘Relevance and proximity networks’), relevance and proximity networks of 
the same density strongly differ in their structure. The different approaches of establishing edges in both networks 
ultimately yield different distribution of the degrees of nodes. In the case of the scale-free relevance network, this 
means that the fraction P(x) of nodes in the network having x connections to other nodes follows for large values of 
x the power-distribution 

𝑃(𝑥)~𝑐𝑥−𝛼 , 
which is invariant to scaling implying that the constant c simply multiplies the original power-law relation. By using 
maximum likelihood methods available in the R package igraph (function power.law.fit) we determined the 
exponent alpha=1.89 (see Fig. 2, Materials and Methods in the main text). 
 In contrast to the relevance network, visual inspection of the degree distribution from the proximity network 
indicated that it does not follow a power-law distribution. While relevance networks resemble a scale-free network5-

7, i.e., a network whose degree distribution follows a power law, we claim that proximity networks resemble a 
gamma-distribution. Again, by fitting various typical distributions (e.g. exponential, (log-) normal, Poisson and t-
distributions) and determining the maximum likelihood, we determined the gamma-distribution to be the best 
representative for the observed degree distribution. All distributions were fitted using the function fitdistr from 
the R package MASS. A gamma distribution can be expressed in terms of the gamma function Γ as  

𝑔(𝑥;  𝑘,𝜃) = 1
𝜃𝑘

1
Γ(𝑘)

𝑥𝑘−1𝑒−
𝑥
𝜃, 

where 𝑘 > 0 and 𝜃 > 0 are the shape and scale parameter, respectively. After determination of both the shape and 
scale parameter, we verified the accordance of both the observed and the fitted distribution by visual inspection of 
both the obtained probability density function and empirical cumulative distribution function (Supplemental Fig. 1) 
illustrating the correspondence of the obtained degree distribution and the theoretical gamma distributions. 
Additionally, we employed two statistical test to quantify the goodness-of-fit using the Chi-Square Goodness-of-Fit 
test8 and Kolmogorov-Smirnoff (KS) test9. In the case of the KS test, the observed degree distribution is tested 
against a theoretical distribution obtained using the fitted gamma distribution. Here, 𝐻0 assumes that both samples 
originate from the same distribution. A ‘discrete’ gamma distribution is obtained by generation and subsequent 
binning of random values derived from gamma distribution using the fitted parameters. The employed KS test can 
be found in the dgof R package and is based on considerations of Conover 10 for discrete distributions. 
 Furthermore, we applied the Chi-square Goodness-of-Fit test, as it is a favourable alternative to the Kolmogorov-
Smirnoff test9, particularly in the case of discrete distributions combined with a large sample size, such as the 
obtained node-degree distributions. Here, the observed frequencies of each node-degree are tested against 
theoretically obtained probabilities in the respective integer intervals for each degree using the fitted reference 
gamma distribution (i.e. the probability density function). Finally, exact p-values can be obtained using Monte Carlo 
simulation11 available in the function chisq.test in the R stats package. Again, as in the case of the KS test, 𝐻0 
in the Chi-Square Goodness-of-Fit test assumes that both distributions are the same.  
 Supplementary Table 1 summarizes the p-values obtained using both statistical test, separately for proximity 
networks using different thresholds for highest reciprocal ranks (Supplemental Table 1A), as well as mutual ranks 
(Supplemental Table 1B, for the definitions please refer to the main text). In the case of proximity networks based 
on mutual ranks, for most tested thresholds (20 to 80) the goodness-of-fit of a gamma distribution can be confirmed 
by failing to reject of 𝐻0 at a significance level of 1% and 5%. In case of the proximity networks based on the 
highest reciprocal ranks, p-values indicate that 𝐻0 can be rejected. However, the visual inspection of the obtained 
degree distribution and theoretically obtained gamma distributions suggests that the gamma distribution closely 
approximates the degree distribution. 
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Supplemental figures 

 
Supupplemetal Fig. 1. Visualization of the obtained degree distribution of proximity networks using the highest reciprocal rank approach (A) 
and the mutual rank approach (B) for different selected threshold (K=20, 30, 40, 50; left-to-right). The theoretical degree distribution following 
a gamma distribution is shown for comparison (red line) both for the probability density function (first and third row) and compared to the 

empirical cumulative distribution function (ECDF, third and fourth row). 
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Supplemental tables 

 

A) highest reciprocal rank 
 

B) mutual ranks 

K log-
likelihood AIC p-value 

(KS-test) 

p-value 
(chi-square 

gof) 

 

K log-
likelihood AIC p-value 

(KS-test) 

p-value 
(chi-square 

gof) 

10 -9702.28 19513.44 <0.001 <0.001  10 -11300.44 22605.43 <0.001 <0.001 

15 -11311.51 22678.36 <0.001 <0.001  15 -12930.71 25867.07 0.002 <0.001 

20 -12475.12 24981.94 <0.001 <0.001  20 -14059.73 28128.52 0.285 0.001 

25 -13398.30 26811.69 <0.001 <0.001  25 -14963.76 29934.40 0.098 0.064 

30 -14172.90 28355.32 <0.001 <0.001  30 -15693.95 31394.96 0.727 0.364 

35 -14813.58 29637.71 <0.001 <0.001  35 -16301.66 32612.11 0.367 0.273 

40 -15395.24 30809.66 <0.001 <0.001  40 -16830.51 33669.18 0.164 0.106 

45 -15904.93 31828.56 <0.001 <0.001  45 -17294.38 34596.84 0.538 0.179 

50 -16362.49 32754.32 <0.001 <0.001  50 -17717.87 35443.25 0.394 0.046 

55 -16769.20 33577.05 <0.001 <0.001  55 -18102.56 36212.96 0.887 0.026 

60 -17127.02 34298.27 <0.001 <0.001  60 -18458.32 36925.70 0.826 0.020 

65 -17469.21 34994.99 <0.001 <0.001  65 -18781.24 37569.19 0.321 0.341 

70 -17785.97 35619.26 <0.001 <0.001  70 -19074.10 38154.03 0.701 0.014 

75 -18080.16 36207.20 <0.001 <0.001  75 -19347.33 38700.53 0.673 <0.001 

80 -18356.43 36773.44 <0.001 <0.001  80 -19589.58 39184.43 0.533 0.006 
Supplemental Table 1. Parameters describing the goodness-of-fit for the gamma distribution and the observed degree-distribution for 
proximity networks, using highest reciprocal ranks (A) and mutual ranks (B) using different thresholds for the number of nearest neighbours 
considered (column 1). 
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