13/11/12 **Erard et al,** Minimum set of mutations needed to optimize cyan

fluorescent proteins for live cell imaging, submitted

Supplementary Information

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is C The Royal Society of Chemistry 2012

13/11/12 **Erard et al,** Minimum set of mutations needed to optimize cyan

fluorescent proteins for live cell imaging, submitted

Table S1: List of oligonucleotides used for mutagenesis. The mutagenic codons are bold.

T65S forward	5'-CGTGACCACCCTGAGCTGGGGGCGTGCAGTGC-3'
T65S reverse	5'-GCACTGCACGCCCCAG CTC AGGGTGGTCACG-3'
S72A forward	5'-CGTGCAGTGCTTC GCC CGCTACCCCGACCAC-3'
S72A reverse	5'-GTGGTCGGGGTAGCG GGC GAAGCACTGCACG-3'
Y145A forward	5'-GCTGGAGTACAACGCCATCAGCGACAACGTC-3'
Y145A reverse	5'-GACGTTGTCGCTGATGGCGTTGTACTCCAGC-3'
H148D forward	5'-CAACTACATCAGCGACAACGTCTATATCACC-3'
H148D reverse	5'- GGTGATATAGACGTT GTC GCTGATGTAGTTG -3'
H148G forward	5'- CAACTACATCAGC GGC AACGTCTATATCACC -3'
H148G reverse	5'- GGTGATATAGACGTTGCCGCTGATGTAGTTG -3'
S175G forward	5'- CAACATCGAGGACGGCGGCGTGCAGCTCGCC -3'
S175G reverse	5'- GGCGAGCTGCACGCGCCGT CCTCGATGTTG -3'
A206K forward	5'- CCTGAGCACCCAGTCC AAG CTGAGCAAAGACCCC -3'
A206K reverse	5'- GGGGTCTTTGCTCAGCTTGGACTGGGTGCTCAGG- 3'
Y66A forward	5'- CGTGACCACCTTCGGCGCCGGCCTGATGTGC- 3'
Y66A reverse	5'- GCACATCAGGCCGGCGCGAAGGTGGTCACG- 3'

13/11/12 **Erard et al**, Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging, submitted

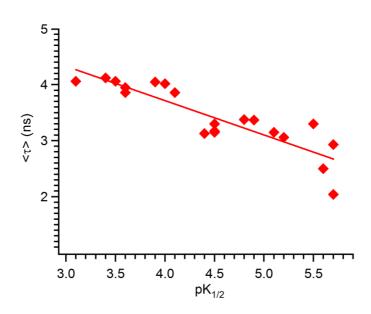
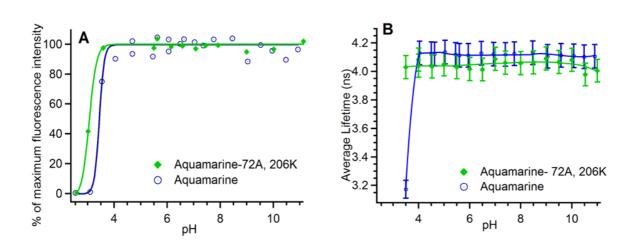



Figure S1. Correlation of the average fluorescence lifetime of CFP mutants vs their $pK_{1/2}$. Data from all mutants of Table 1 are plotted in the figure, and a linear fit was applied for eye guidance.

13/11/12 **Erard et al**, Minimum set of mutations needed to optimize cyan

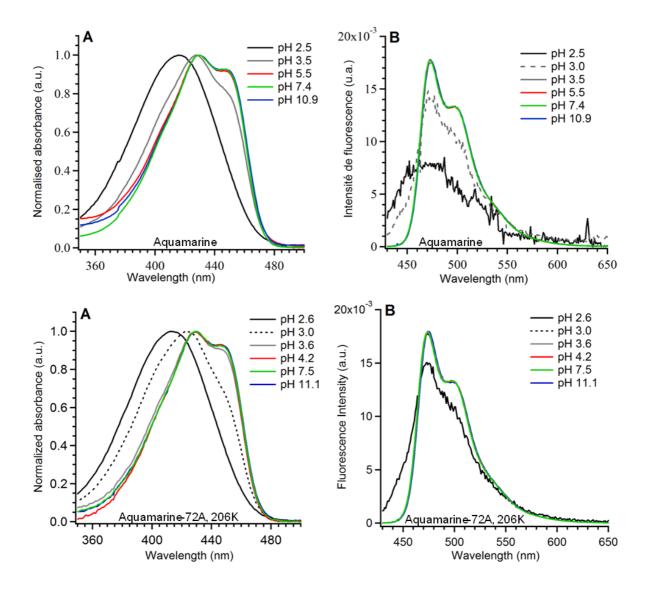

fluorescent proteins for live cell imaging, submitted

Figure S2. Extended pH stability of Aquamarine-72A-206K *vs* **Aquamarine.** (A) fluorescence intensity and (B) average lifetime.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is O The Royal Society of Chemistry 2012

13/11/12 **Erard et al,** Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging, submitted

Figure S3. pH dependence of the spectral properties of Aquamarine (top) and Aquamarine-72A-206K (bottom). (A) Absorption and **(B)** emission spectra normalized to maximum of the chromophore band.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is C The Royal Society of Chemistry 2012

13/11/12 **Erard et al**, Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging, submitted

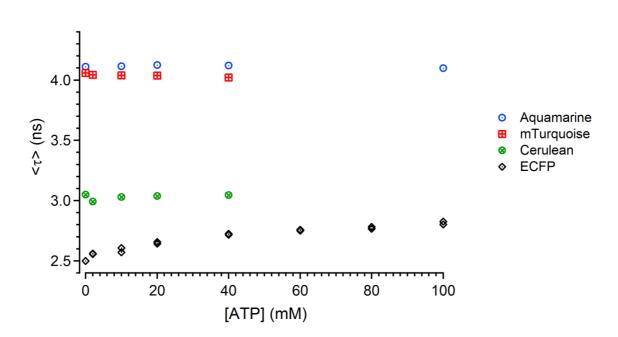
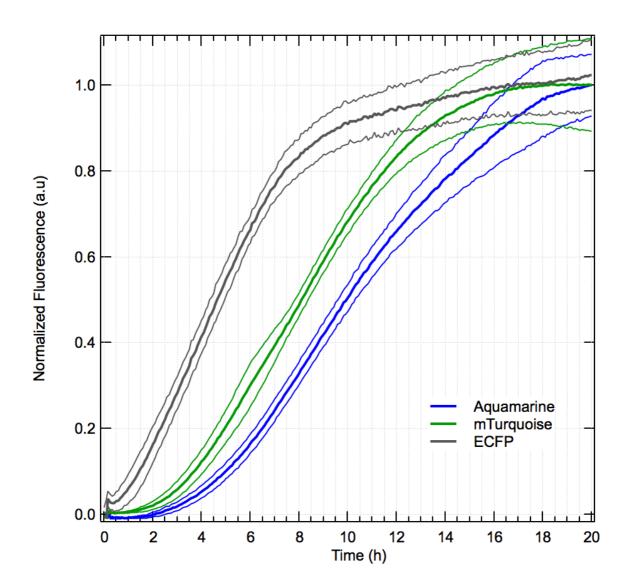
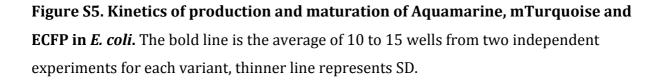
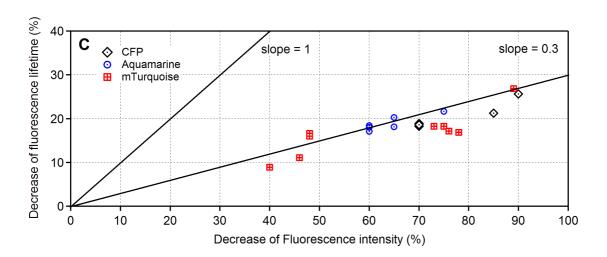




Figure S4. Variations of the average fluorescence lifetime of purified CFP variants in the presence of ATP.


Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is O The Royal Society of Chemistry 2012

13/11/12 **Erard et al**, Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging, submitted

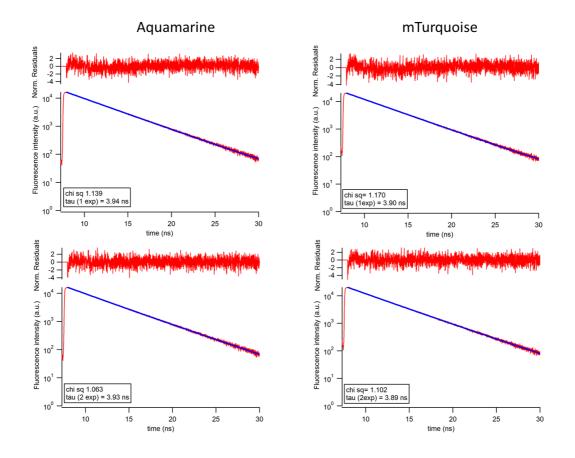

13/11/12 **Erard et al,** Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging, submitted

Figure S6. Fluorescence lifetime changes during irreversible photobleaching of CFPs. Black slopes were plotted for eye guidance only.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

13/11/12 **Erard et al**, Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging, submitted

Figure S7. Examples of fits of TCSPC histograms collected from cytosolic Aquamarine and mTurquoise. Single exponential fits (top) and bi-exponential fits (bottom) of Aquamarine (left) and mTurquoise (right). The decay fit (blue), normalized residuals, chi square and average lifetime are shown.