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Organisms Used for Analysis

In this work, the kingdom of Animalia is represented by Homo sapiens and Mus musculus. The

metabolic reactions of H. sapiens were taken from RECON1 and the metabolic network recon-

struction of M. musculus is largely based on RECON1 as well. Additional Eukaryotes include two

species of Fungi, Saccharomyces cerevisiae and Pichia pastoris, both of which are well-known model

organisms with similar life cycles and environmental requirements.

Archaea are represented by two closely related species, Methanosarcina barkeri and Methanosarcina

acetivorans and a third Halobacterium salinarum. Both methanogenic Archaea are known for

employing all three pathways of methane production, which makes them popular for use in the

development of biofuels.

There are two plants under investigation, Arabidopsis thaliana and Zea mays. Similarly, there

is one algae, Chlamydomonas reinhardtii, which belongs to the kingdom of Protista. C. reinhardtii

is motile, and uses two flagella to propel itself. It has a light-sensitive eyespot and is a popular

model organism for use in the development of alternative fuel sources.

In addition to the aforementioned organisms which comprise five of the six kingdoms of life, there

are eleven species of Bacteria that span a wide range of physiological features and environments.
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Clostridium thermocellum is a Gram+ anaerobe and an extremophile that lives in thermophilic

environments. Many of the Bacteria in this set are interesting because of the role they play in human

diseases. For instance, Vibrio vulnificus is a close relative of Vibrio cholerae, the Bacterium that

causes cholera, and Escherichia coli, Staphylococcus aureus, Helicobacter pylori and Mycobacterium

tuberculosis are all well-known human flora and potential pathogens, implicated in diseases of the

respiratory system to the digestive tract.

Species Kingdom Nodes Edges Compartment

A. thaliana Plantae 1501 3411 Cytosol [5]
50 122 Mitochondrion
57 112 Peroxisome

C. reinhardtii Protista 660 2165 Cytosol [3]
25 58 Golgi
260 652 Mitochondrion
48 56 Nucleus

C. thermocellum Bacteria 516 1604 Cytosol [16]
D. ethenogenes Bacteria 501 1498 Cytosol [1]
E. coli Bacteria 908 2863 Cytosol [9]
H. pylori Bacteria 400 1194 Cytosol [20]
H. salinarum Archaea 526 1269 Cytosol [11]
H. sapiens Animalia 779 2181 Cytosol [6]

184 402 ER
234 591 Golgi
189 351 Lysosome
352 905 Mitochondrion
85 173 Nucleus
135 335 Peroxisome

G. sulfurreducens Bacteria 466 908 Cytosol [14]
M. acetivorans Archaea 697 1832 Cytosol [13]
M. barkeri Archaea 542 1602 Cytosol [10]
M. musculus Animalia 842 2399 Cytosol [18]

182 400 ER
262 643 Golgi
205 383 Lysosome
385 1019 Mitochondrion
85 176 Nucleus
140 342 Peroxisome

M. tuberculosis Bacteria 486 1417 Cytosol [8]
P. pastoris Fungi 571 1774 Cytosol [4]

19 22 ER
16 20 Golgi
225 576 Mitochondrion

S-2

Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2012



36 62 Nucleus
74 161 Peroxisome

R. etli Bacteria 350 748 Cytosol [15]
S. aureus Bacteria 549 1657 Cytosol [2]
S. cerevisiae Fungi 528 1657 Cytosol [7]

15 18 ER
11 17 Golgi
214 531 Mitochondrion
30 45 Nucleus
73 186 Peroxisome

S. typhimurium Bacteria 852 3102 Cytosol [19]
T. maritima Bacteria 727 2478 Cytosol [21]
V. vulnificus Bacteria 831 2494 Cytosol [12]
Z. mays Plantae 1418 2463 Cytosol [17]

60 78 Mitochondrion
50 51 Peroxisome

There are more published metabolic network reconstructions available than were included in

the analyses. Criteria for inclusion were simply that the reconstructions were curated in SBML and

were readable into the COBRA toolbox in Matlab. These criteria insured that the reconstructions

were curated using similar protocols and adequately formatted and vetted for typographical errors.

Although compatability with COBRA was a requirement, neither COBRA nor Matlab were used

for analysis. Once each reconstruction was read into Matlab, we exported relevant data as plain

text files to use for motif mining. Specifically, we extracted the stoichiometric matrix, the reaction

and metabolite names, a dummy variable indicating the reversibility of each reaction and the

subsystem to which the reaction belonged (e.g. “Folate Biosynthesis,” “TCA Cycle”, “Salvage

Pathway of ATP”).

Motifs of Size Three

This work focused only on motifs of node-size three. All motifs were represented as substrate

graphs. Substrate graphs represent associativity of nodes, rather than mechanistic relationships

like those of a bipartite graph. Each graph type has its advantages and disadvanges. For instance,

when using bipartite graphs of size 3 it is possible to generate motifs that contain no biological

meaning. For example a bipartite motif might contain two nodes that represent reactions and one
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that represents a metabolite, which is not a valid chemical mechanism. Similarly, because substrate

graphs are associations, we cannot know the chemical mechanism from the motif structure.

Motif Number Motif Structure Name

1

A

B C
Concurrent

2

A

B C
Trapping Reactions

3

A

B C
Consecutive Reactions

4

A

B C
Consecutive Reactions with Reversible Step

5

A

B C
Trapping Reactions with Reversible Step

6

A

B C
Reversible Consecutive Reactions

7

A

B C
Feed-forward Reaction

8

A

B C
Closed Cycle

9

A

B C
Concurrent Reaction with Exchange

10

A

B C
Trapping Reaction with Exchange
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11

A

B C
One Way Cycle with One Reversible Step

12

A

B C
One Way Cycle with Two Reversible Steps

13

A

B C
Reversible Cycle

Extracting Reaction Mechanisms from Substrate Graphs

As previously mentioned, one cannot infer reaction mechanisms from substrate graphs. In order

to do this as in Section 2.2, we enumerated every possible mechanism capable of yielding each of

the 13 motifs. For example the first motif,

A

B C , has two possible mechanisms: It could be either

C → A and C → B or C → A + B. In addition to enumerating both of these mechanisms, it is

also crucial to enumerate all the combinations of reversibility. It could be the case that the correct

mechanism for the first motif is C → A and C → B, but the C → B reaction is actually the reverse

direction.

In order to characterize each motif, we used the stoichiometric matrices from the E. coli, H.

sapiens, M. barkeri and S. cerevisiae metabolic network reconstructions. Stoichiometric matrices

contain integers that denote whether a metabolite is produced, consumed or not a participant in

a particular reaction. Negative integers denote consumption, positive integers denote production,

and zeros denote absence. First, we generated a second stoichiometric matrix that contained the

reverse mechanisms for all reversible reactions. We searched for motif mechanisms using a series of

conditional tests in R. For example to find the reaction C → A, it is we used:

which(Stoich[paste(motif1$nodeA[i]), ] > 0 &

Stoich[paste(motif1$nodeB[i]), ] == 0 &

Stoich[paste(motif1$nodeC[i]), ] < 0)
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The “which” function will return the stoichiometric matrix column indices for reactions where

node A is being produced (A > 0), node B does not participate (B == 0) and node C is being

consumed (C < 0). Similar conditionals were used for all other combinations of reversibility.

Results
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Figure S.1: Average significance profile of 3-node motifs in cytosol. The top panel shows motif
distributions by kingdom and the bottom by species.

Perhaps the most striking result is the consistency of the significance profile of the cytosol

across the species and kingdoms of life, which are nearly identical. This is a remarkable finding

given the vast range of environments and functions of the organisms and, more practically, the
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range of laboratories and research groups responsible for curating the reconstructions. Most of the

reconstructions have differing curation protocols, naming conventions and definitions, however the

emergent metabolic patterns are strikingly similar.

In addition to the overall consistency of the species, the within kingdom consistency is notable.

Both species of yeast show identical enrichment/suppression patterns. There are no contrary motifs

in the kingdom Animalia nor Archaea, although variation in the extent of enrichment is relatively

high between the two species of Archaea.

Fig. S.2 contains the barplots for the proportions of motif pathway participation. In the text,

this plot was reduced to only those pathways that represented at least 5% of the total for each

motif.
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