Supporting information

In vivo investigation of the substrate recognition capability and activity affecting

amino acid residues of glycosyltransferase FscMI in biosynthesis of candicidin

Xuan Lei, Lingxin Kong, Chen Zhang, Qian Liu, Fen Yao, Weike Zhang, Zixin Deng, Delin

You*

Table S1. Primers used in this study. Restriction sites and mutation sites are underlined.

Primers	Sequences (5'-3')
Apr-KpnIF	<u>GGTACC</u> CGGGGATCCGTCGACC
Apr-KpnIR	<u>GGTACC</u> GTAGGCTGGAGCTGCTTC
LX1rightF	<u>GGTACC</u> AGTCGTCGGTGGTCTACATG
LX1rightR	AAGCTTTGCATGGCCGTCATCCGGTA
LX1leftF	GAATTCTCGTCGGAGCCCACGA
LX1leftR	<u>GGTACC</u> GCCTTGAAGCGGGAGGACT
fscMI-testF	GACGACGAGGTGTACCGCGAGGTCA
fscMI-testR	CCTGGTCGAAGCAGTCCACCACA
fscMIF2	<u>CATATG</u> GACTCCGCCGGCCCGG
fscMIR2	<u>GGATCC</u> TCATGCCGCCGGGAGCAGG
amphDIF2	<u>CATATG</u> GGTGGACGCGAGGCGTG
amphDIR2	TCAGTCGTTTGCCAGGACGGGGA
nysDIF	CATATGACCCTTCCTTCCGGCAA
nysDIR	TCAGTCGGTTGCCAGGGCGGGAA
pimKF	CATATGGAATCCGCCCGACGGCC
pimKR	TTACGCCAGGGCCGGGAGCGAGA
DH11P1	TGTCGCGGGCGTCATCAAGATGGTC
DH11P2	CGCGCACCGT <u>GTACAC</u> GGCGAGCCA
DH11P3	TGGCTCGCC <u>GTGTAC</u> ACGGTGCGCG
DH11P4	CGGCGAGGAGGAGAACACCACGAA

DH11testF	ACACGGCACGGGGCTCTTCCTCG
DH11testR	GTGACGTCCTGCCAGGCGAACGG
31-F	GCCGGGGAGCTTGCC <u>GCC</u> CGCGGTGTGCCGGAC
31-R	GTCCGGCACACCGCGGGCGGCAAGCTCCCCGGC
346-F	GAGAGCTGGGTGCCC <u>GCC</u> CAGCTCGATGTGCTG
346-R	CAGCACATCGAGCTGGGCGGGCACCCAGCTCTC
361-F	GTCTCCGTCTTCTTC <u>GTC</u> CACGGCGGCGGCAAC
361-R	GTTGCCGCCGCGTGGACGAAGAAGACGGAGAC
362-F	TCCGTCTTCTTCTCG <u>GCC</u> GGCGGCGGCAACGCC
362-R	GGCGTTGCCGCCGGCCGAGAAGAAGACGGA
370-F	GGCAACGCCTACCAC <u>GCC</u> GGCGTCTACTTCGGT
370-R	ACCGAAGTAGACGCCGGCGTGGTAGGCGTTGCC
387-F	CCCCTGTGGGTGGAC <u>GCC</u> TTCGACCAGGCGGTC
387-R	GACCGCCTGGTCGAAGGCGTCCACCCACAGGGG

Fig. S1. Further analysis of the fermentation culture extracts of LX1 and LX8 by LC-MS or Q-TOF. (A) LC-MS profile of compound 5, the product of LX1. (B) Q-TOF analysis of compound 9 and 10.

C-terminal NDP-sugar donor binding domain

GTs. The N-terminal domain provides the acceptor binding site, whereas the C-terminal

domain is responsible for binding the NDP-sugar donor. The conserved His-X7-Glu motif

shared by many GT-B GTs is highlighted in the red box.

Fig. S3. Construction of the plasmid for point mutation of DH11 and verification of DH11 mutant. (A) Schematic diagram of the plasmid construction procedure for point mutation of DH11 in FscD. (B) Verification of DH11 mutant. PCR products from ZYJ-6 and LX8 were digested by BsrGI. M, 1 kb DNA ladder; 1, PCR product of ZYJ-6; 2, 3, PCR products of mutants LX8. The 1,002 bp PCR product from LX8 was digested into 419 bp and 583 bp DNA fragments by BsrGI.

Fig. S4. Alignment of the secondary structures of C-terminal domains of FscMI and UGT2B7. FscMI and UGT2B7 have the same secondary structure in the C-terminal domain. Helices and β sheets are represented by cylinders and arrows respectively.