Supplementary material

for

Network Analysis of Genomic Alteration Profiles Reveals Co-altered Functional Modules and Driver Genes in Glioblastoma

Yunyan Gu^{1*}, Hongwei Wang¹, Yao Qin¹, Yujing Zhang¹, Wenyuan Zhao¹, Lishuang Qi¹, Yuannv Zhang¹, Chenguang Wang¹, Zheng Guo^{1,2*}

¹ College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China

² Bioinformatics Center, Fujian Medical University, Fuzhou, 350004, China

^{*} Corresponding author

Email: <u>guoz@ems.hrbmu.edu.cn</u> or <u>guyunyan@ems.hrbmu.edu.cn</u> Phone: (86 451) 8661-5933

Fax: (86 451) 8666-9617

Table of Contents

- A. Supplementary Methods (pg 3-4)
- B. Supplementary Figures (pg 5-11)
- C. Supplementary Tables (pg 12-19)

A. Supplementary Methods

The pseudo codes for searching co-altered module pair

Input: (1) G(V, E), where G is the connected sub-network, V is the set of genes and E is the set of edges in the network;

- (2) Alteration profiles;
- Output: $R=(M_1, M_2, ..., M_N)$, N module pairs, $M_i(G_1, G_2)$, i=1...N, will to be discovered and returned.

N is also the number of all seed pairs.

S is the co-alteration score of the module pair.

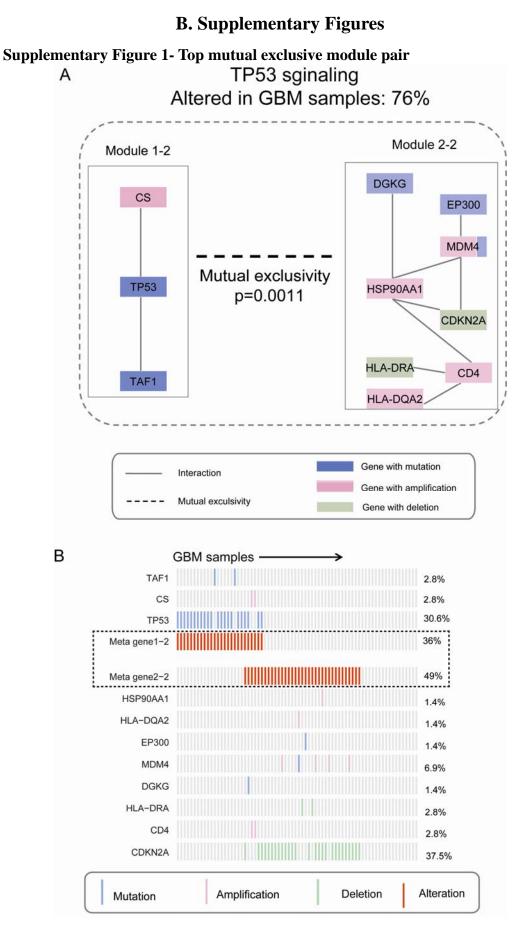
- 1: $R = \phi$. S = 0. N'=1.
- 2: $M(G_1, G_2)$ is the module pair that we will discover.
- 3: repeat

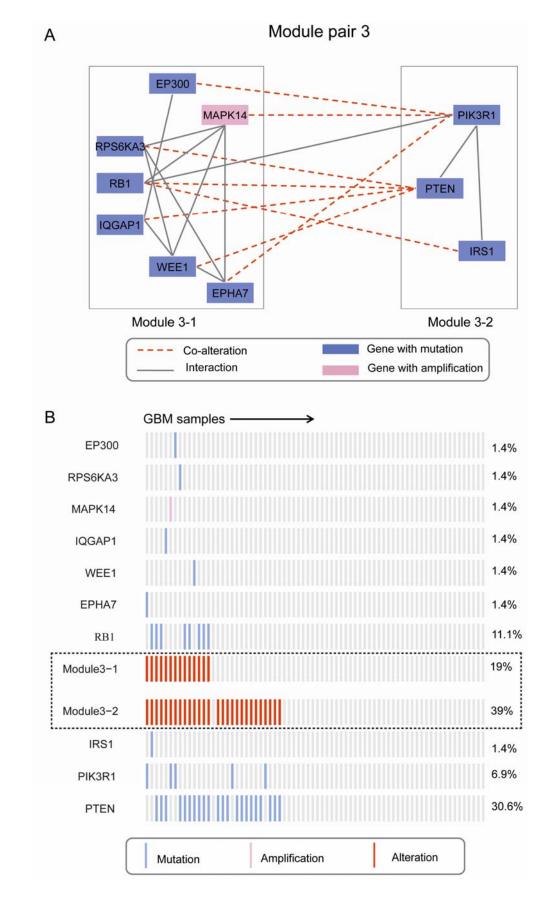
4:	Taking	each	pair	of	altered	genes	as	а	seed	pair,	also	a	module	pair	$M(G_1,$	G ₂),
	$G_1 = \{i\}$	$, G_2 =$	={j}. \$	S=S	seed.											

5: repeat

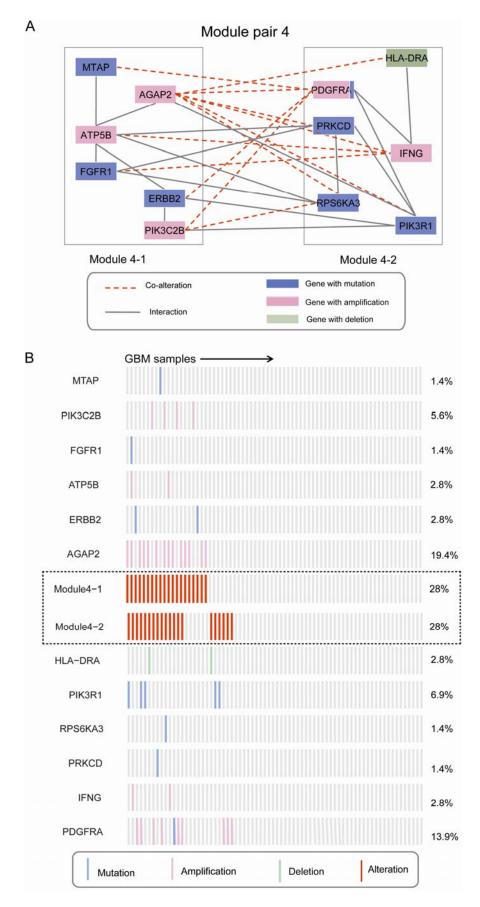
6:

#add one altered gene in module pair#

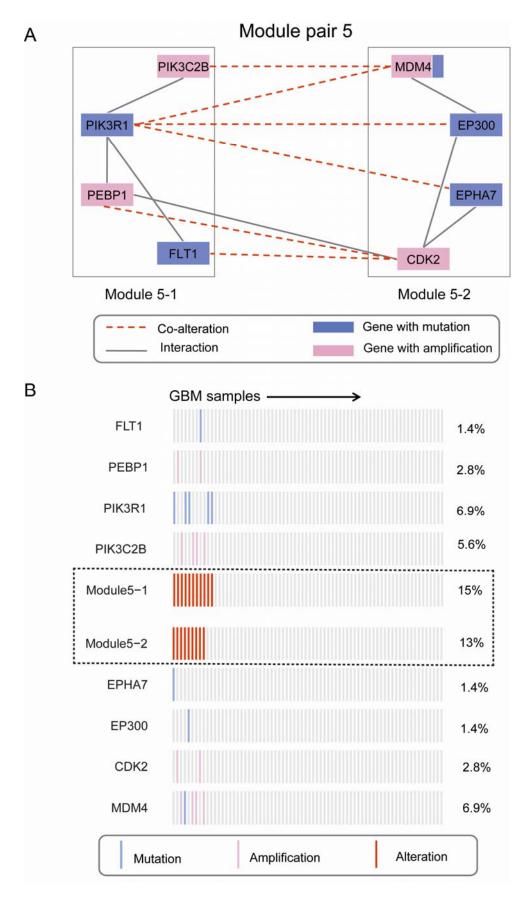

7: Find all edges $E(G_1, k_p)=1$ or $E(G_2, k_q)=1$ from E. p,q=1,...n. we regard the nodes $k_1, ..., k_p, ..., k_q, ..., k_n$ as the direct interaction neighbors with G_1 or G_2 .

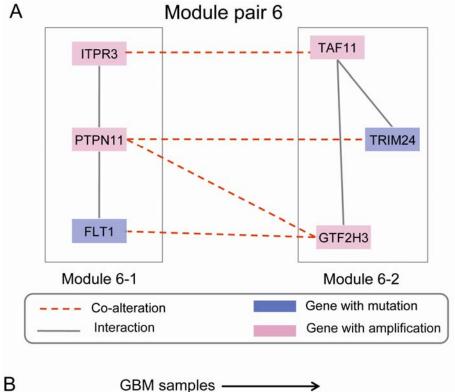

8:
$$V'=\{v \mid v \in k_1, ..., k_p, ..., k_q, ..., k_n, \text{ and } E(G_1, v)=1 \text{ or } E(G_2, v)=1, v \notin G_1 \cup G_2\}$$

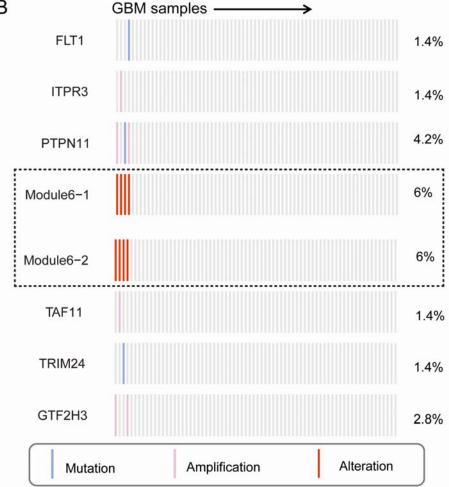
9:	if V' is empty then
10:	S unchanged
11:	Else
12:	while there is at least one interaction neighbor with G_1 or G_2 do
13:	for all $v \in V'$ do
14:	Calculate $S(v)=max(S(G_1 \cup v, G_2) E(G_1, v)=1, S(G_1, G_2 \cup v) E(G_2, G_1) E(G_2) E$
	v)=1)
15:	if $S(v) > S$ then
16:	Set S= S(v), added v to $G_1 $ E(G_1 , v)=1 or added v to $G_2 $ E(G_2 ,
	v)=1,
17:	end for
18:	end while
19:	#delete one altered gene from module pair#
20:	Find all nodes $x_1, \ldots, x_p, \ldots, x_n$ with only one interaction neighbor in the
	current module pair $M(G_1, G_2)$. And, they are not the current seeds and not
	the new added node.
21:	$X' = \{x \mid x \in x_1,, x_p,, x_n, x \text{ is not the current seed and not the new added}$
node}	
22:	if X' is empty then
23:	S unchanged
24:	else
25:	while there is at least one node that not the current seed and not the

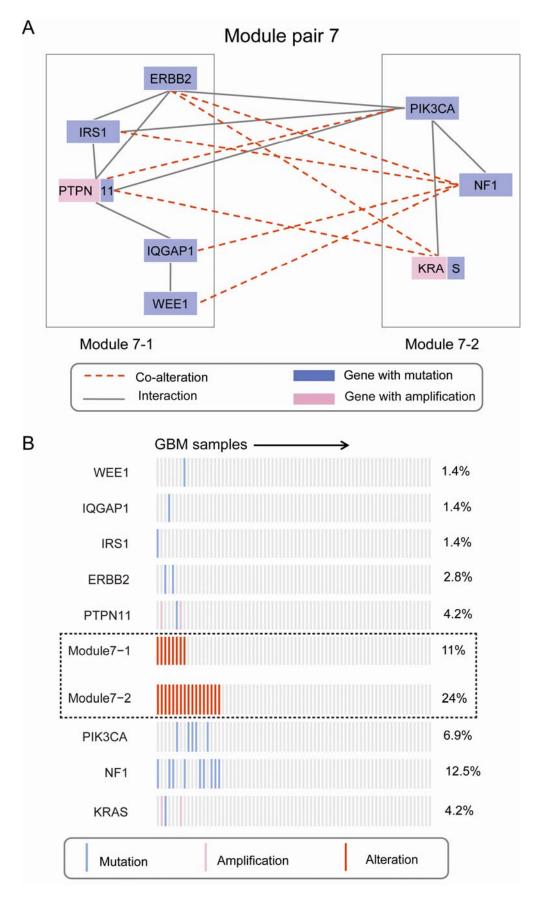

new added node in $M(G_1, G_2)$ do

- 26: **for** all $x \in X'$ **do**
- 27: Calculate $S(x)=max(S(G_1-x, G_2)|x \in G_1, S(G_1, G_2-x)|x \in G_2)$
- 28: **if** S(x)>S **then** Set S=S(x), $G_1=G_1-x | x \in G_1$ or $G_2=G_2-x | x \in G_2$
- 29: **end for**
- 30: end while
- 31: **until** S no longer increased
- 32: add $M(G_1, G_2)$ into R
- 33: N'=N'+1
- 34: until N'>N

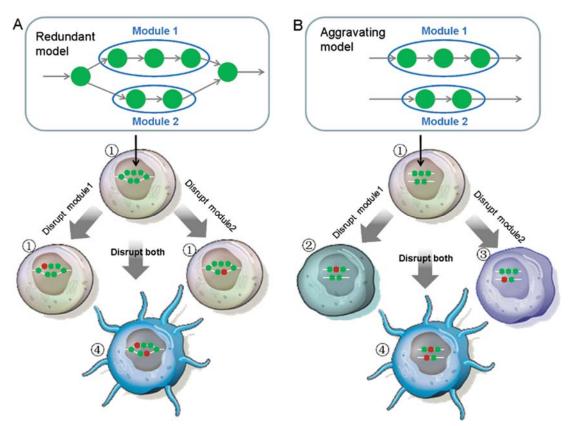



Supplementary Figure 2- Co-altered module pair 3


Supplementary Figure 3- Co-altered module pair 4



Supplementary Figure 4- Co-altered module pair 5


Supplementary Figure 5- Co-altered module pair 6

Supplementary Figure 6- Co-altered module pair 7

Supplementary Figure 7- Schematic diagram of the redundant and aggravating

models for co-altered modules

Supplementary Figure 7– (A) The redundant model for co-altered modules. Alterations in modules 1 or 2 alone could not transform normal cells into cancer cells; cells become cancerous only when both of the modules are disrupted. (B) The aggravating model for co-altered modules. Alterations in modules 1 and 2, which individually have limited effects on promoting cancer, cooperate to transform normal cells into cancer cells. (1) denotes normal cells. (2) and (3) denote the cells with characteristics of cancer cells. (4) denotes the cancer cells. The red and green nodes within the modules represent genes with and without alterations, respectively.

C. Supplementary Tables

ID	Module ID	Entrez Gene ID	Gene Symbol ¹	Pathway	#N ²	#M ³	$\#S^4$	<i>P</i> -value
	Module 1-1	5925	RB1	-	8			
		1027	CDKN1B	RB	2			
		8826	IQGAP1	signaling	1	13		
1		7465	WEE1	pathway	1		12	6.41E.06
		2045	EPHA7		1		12	6.41E-06
	Module 1-2	7157	TP53	TP53	22			
		1431	CS	signaling	2	26		
		6872	TAF1	pathway	2			
	Module 2-1	1956	EGFR		34			
		1432	MAPK14	RTK	1			
		506	ATP5B	signaling	2	41		
		5287	PIK3C2B	pathway	4			
		5290	PIK3CA		5			
2	Module 2-2	1029	CDKN2A		27			
2		920	CD4		2		31	8.57E-08
		3122	HLA-DRA	TD52	2			
		1608	DGKG	TP53	1	25		
		4194	MDM4	signaling	5	35		
		2033	EP300	pathway	1			
		3118	HLA-DQA2		1			
		3320	HSP90AA1		1			
	Module 3-1	5925	RB1		8			
		2045	EPHA7		1			
		7465	WEE1	RB	1			
		8826	IQGAP1	signaling	1	14		
3		1432	MAPK14	pathway	1		14	1.34E-07
		6197	RPS6KA3		1		14	1.34E-07
		2033	EP300		1			
	Module 3-2	5728	PTEN	RTK	22			
		5295	PIK3R1	signaling	5	28		
		3667	IRS1	pathway	1			
4	Module 4-1	116986	AGAP2		14		14	2.66E-06
		2064	ERBB2	RTK	2			
		506	ATP5B		2	20		
		2260	FGFR1	signaling pathway	1	20		
		5287	PIK3C2B	paurway	4			
		4507	MTAP		1		ļ	
	Module 4-2	5156	PDGFRA	RTK	10	20		
		3458	IFNG	signaling	2			

Supplementary Table 1- The co-altered module pairs

		5580	PRKCD	pathway	1			
		6197	RPS6KA3		1			
		5295	PIK3R1		5			
		3122	HLA-DRA		2			
	Module 5-1	5287	PIK3C2B	RTK	4			
		5295	PIK3R1		5	11		
		5037	PEBP1	signalingpathway	2			
5		2321	FLT1	pathway	1		9	6 46E 10
	Module 5-2	4194	MDM4	TD52	5		9	6.46E-10
		1017	CDK2	TP53	2	9		
		2033	EP300	signalingpathway	1			
		2045	EPHA7	paulway	1			
	Module 6-1	5781	PTPN11		3		4	9.72E-07
		3710	ITPR3	/	1	4		
6		2321	FLT1	/	1			
	Module 6-2	2967	GTF2H3	/	2		4	9.72E-07
		8805	TRIM24	/	1	4		
		6882	TAF11		1			
	Module 7-1	5781	PTPN11		3			2.025.07
		2064	ERBB2	RTK	2	8	8	
		3667	IRS1	signaling	1			
7		8826	IQGAP1	pathway	1			
		7465	WEE1		1		0	2.03E-06
	Module 7-2	3845	KRAS	RTK	3	17		
		4763	NF1	signaling	9			
		5290	PIK3CA	pathway	5			

Note:

¹Gene symbols marked in blue indicate that the gene is annotated in the GBM signaling pathway (column "Pathway") identified by the original TCGA analysis.

 2 #N denotes the number of glioblastoma samples that contain alterations of the individual genes in the module.

³#M denotes the number of glioblastoma samples that contain the alterations of the Module.

⁴#S denotes the number of glioblastoma samples that contain the alterations from both modules.

Entrez	Gene symbol	$Sample^{\#}$	Cancer*	GBM ^{**}	F-census [§]	Core pathway ^{&}
Gene ID						
506	ATP5B	2	22	1	No	No
920	CD4	2	18330	65	No	No
1017	CDK2	2	2515	6	Yes	No
1027	CDKN1B	2	3325	11	Yes	No
1029	CDKN2A	27	7141	60	Yes	Yes
1431	CS	2	21557	36	No	No
1432	MAPK14	1	76	2	Yes	No
1608	DGKG	1	1	0	No	No
1956	EGFR	34	13379	273	Yes	Yes
2033	EP300	1	200	2	Yes	No
2045	EPHA7	1	29	1	Yes	No
2064	ERBB2	2	14558	16	Yes	Yes
2260	FGFR1	1	590	5	Yes	No
2321	FLT1	1	204	1	Yes	No
2967	GTF2H3	2	1	0	No	No
3118	HLA-DQA2	1	0	0	No	No
3122	HLA-DRA	2	121	0	No	No
3320	HSP90AA1	1	6	1	Yes	No
3458	IFNG	2	83	1	Yes	No
3667	IRS1	1	434	1	No	No
3710	ITPR3	1	2	0	No	No
3845	KRAS	3	2514	5	Yes	Yes
4194	MDM4	5	168	5	Yes	Yes
4507	MTAP	1	136	1	Yes	No
4763	NF1	9	2155	8	Yes	Yes
5037	PEBP1	2	94	0	Yes	No
5156	PDGFRA	10	1565	19	Yes	Yes
5287	PIK3C2B	4	14	2	No	No
5290	PIK3CA	5	781	3	Yes	Yes
5295	PIK3R1	5	41	2	Yes	Yes
5580	PRKCD	1	231	0	Yes	No
5728	PTEN	22	4542	129	Yes	Yes
5781	PTPN11	3	515	2	Yes	No
5925	RB1	8	1163	5	Yes	Yes
6197	RPS6KA3	1	0	0	Yes	No
6872	TAF1	2	21	0	Yes	No
6882	TAF11	1	1	1	No	No
7157	TP53	22	5123	58	Yes	Yes
7465	WEE1	1	195	0	Yes	No

Supplementary Table 2- Candidate driver genes of GBM

8805	TRIM24	1	13	0	Yes	No
8826	IQGAP1	1	85	1	No	No
116986	AGAP2	14	18	1	Yes	No

Note:

[#]Sample indicates the number of samples harboring alterations in the gene.

*Cancer indicates the number of times the altered gene co-appeared with the term "cancer" in the articles from PubMed.

^{**}GBM indicates the number of times the altered gene co-appeared with the term "GBM" in the articles from PubMed.

[§]If the altered gene is recorded in the cancer gene database "F-census", it is marked with "Yes"; otherwise, it is marked with "No".

[&] Core pathway indicates the three critical GBM pathways analyzed in the original TCGA GBM study. If the altered gene appears in any of the three pathways, it is marked with "Yes"; otherwise, it is marked with "No".

PMID* **Gene Symbol Description from papers** ATP5B co-regulated with ANT1 in glioblastoma. ATP5B 22978616 CD4 It has been reported that CD4 may function as an 19143470/18490770/2 important mediator of immune-mediated diseases of the 2872572/22485134/16 central nervous system, and CD4⁺ T cells were required 631933/8592229 for GBM regression and immunological memory CDK2 Assessment of gene expression in TCGA-derived 19139420/21807073/1 GBMs revealed overexpression of MRC cancer genes 7289901/15531918 AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. CDKN1B CDKN1B decreased with anaplasia and almost 12133571/16805985 disappeared in glioblastomas. CDKN2A The most common homozygously deleted region 20212223/22736234/2 contained CDKN2A/CDKN2B (p15 and p16) occurring 2711607/22086906/22 in 29% of GBM cases. The CDKN2A/CDKN2B locus 046342/21987724/217 was deleted in 46.4% of the combined cases. 13760/21472719/2082 2523/18981259/17465 990/17121137 CS RA, together with Cs, Cl and CP, might be the new 23085868 leaders in the evaluation of brain tumors. MAPK14 The upregulation of PTEN gene was correlated with the 20436671/22185703/2 downregulation of numerous genes including Akt, JUN, 1663587 MAPK14 in glioma cells. DGKG / / EGFR Our experiments found that miR-34a was often deleted 22580610/23043252/2 and epidermal growth factor receptor (EGFR) was 3029035/23012408/ frequently amplified in genomic DNA of 55 GBMs 22930388/22737970/2 using single-nucleotide polymorphism DNA microarray. 2736234/22588883/22 Notably, we found that the mean survival time was 472960/22348136/223 significantly shortened for patients whose GBMs had 23597/22232519/2216 both EGFR amplification and miR-34a deletion. 2832/22089350/ 21975932 EP300 21489305/21807073/2 The gene EP300 is a driver in GBM, which could predict survival for patients with GBM. 1304179 EPHA7 Overexpression of EPHA7 protein was predictive of 18366728 the adverse outcome in GBM patients, independent of MVD expression. Moreover, high density of MVD as well as higher EphA7 expression predicted the disease outcome more accurately than EphA7 variable alone

Supplementary Table 3- Literature evidence for candidate cancer driver genes

	receptors (ERBB2 and ERBB3) was observed in GBM CSCs deprived of EGFR signal. Dual inhibition of EGFR and ERBB2 with lapatinib significantly reduced GBM proliferation in colony formation assays compared to cetuximab-mediated EGFR-specific inhibition.	19793689/17571214/1 7536308/17457042/15 256472/14965445/129 02879/12532415/7760 096
FGFR1	Studied key genes through GO-analysis, pathway-analysis and in the Me-CCNU-related signal transduction networks, 25 core genes that influenced chemosensitivity of GBM to Me-CCNU were obtained, including TP53, FGFR1, MAP2K2, EP300, PRKCA, CCND1, AKT2, RBL1, RAF1, CDKN2C and so on.	21807073/22837387/ 19340397
FLT1	A prerequisite for tumor angiogenesis, besides the expression of the angiogenic VEGF by tumor and stromal cells, is the expression of the VEGF receptors FLT-1 and KDR in rat C6 glioblastoma cells.	9393770
GTF2H3	/	/
HLA-DQA2	/	/
HLA-DRA	/	/
HSP90AA1	We investigated protein expression between the four regions of glioblastoma on clinically relevant biopsies from 5 patients. We identified 584 non-redundant proteins and 31 proteins were found to be up-regulated in the tumor region compared to the peri-tumoral brain tissue, among which, 24 proteins belong to an interaction network linked to 4 biological processes. The core of this network is mainly constituted of interactions between beta-actin (ACTB) with heat shock proteins (HSP90AA1, HSPA8) and 14-3-3 proteins (YWHAZ, YWHAG, YWHAB).	22575386/22952576
IFNG	ATRA plus IFN-γ could significantly decrease cell viability and increase morphological features of apoptosis in glioblastoma cells lines.	17960384/22185703
IRS1	For glioblastoma, we identified alterations of critical genes in the TP53 pathway (TP53, MDM2, and MDM4), the RB1 pathway (RB1, CDK4, and CDKN2A), and the PI3K/PTEN pathway (PIK3CA, PIK3R1, PTEN, and IRS1).	18772396
ITPR3	/	/
KRAS	We show here that Ink4a-Arf deficiency allows for GBM formation from astrocytes and that it enhances tumor incidence in neural progenitor cells. Furthermore, KRAS alone can cooperate with deletion of the Ink4a-Arf locus in tumor formation from both neural	12359767/21949886

	progenitor cells and astrocytes.	
MDM4	Illumina Bead Arrays were used to assay 22 GBMs and Digital Karyotyping was used on 8 GBM cell lines and one primary sample. The common amplifications we observed for all 31 samples was GLI/CDK4 (22.6%), MDM2 (12.9%) and PIK3C2B/MDM4 (12.9%).	19609742/21807073/1 6319692
МТАР	This finding suggests that all three genes (CDKN2A/p16, CDKN2B/p15, and MTAP) may be inactivated in glioblastomas by a large deletion event.	21884817
NF1	Humans with mutations in NF1 develop neurofibromatosis type I (NF1) and have increased risk of optic gliomas, astrocytomas and glioblastomas	10973261/23045694/22539962/22086906/21889780/20442305/20129251/19915670/18975243
PEBP1	/	/
PDGFRA	Using primary GBM cells maintained under neurosphere conditions, we then demonstrated that miR-34a specifically affects growth of proneural glioma cells in vitro and in vivo. Further bioinformatic analysis identified PDGFRA as a direct target of miR-34a and this interaction was experimentally validated.	22479456/23029035/2 2747609/22661320/22 661233/22323597/218 80180/22086906/2012 9251/19915670/19609 742/18816605/199674 49/17504929/ 17002787
PIK3C2B	PIK3C2B has a crucial role in the PI3K signaling pathway involved in the regulation of cell proliferation in GBM patients	21861842 /19189657/19609742
PIK3CA	The highest frequencies of gains were detected on PIK3CA (64.3%), EGFR (57.1%), CSE1L (57.1%), NRAS (50%), MYCN (42.9%), FGR (35.7%), ESR (35.7%), PGY1 (35.7%), and D17S167 (35.7%). These genes are suggested to be involved in the GBM tumorigenesis.	11351043/22930388/2 2064833/22026810
PIK3R1	We mapped alterations in each of these pathways and found that they included the catalytic PIK3CA and regulatory PIK3R1 subunit genes of the class IA PI3K. Knockdown of either of these genes separately in GBM cell lines by lentiviral-mediated shRNA expression resulted in decreased proliferation, migration, and invasion in all lines tested.	22064833/21663587
PRKCD	/	/
PTEN	PTEN appears to be the major target of inactivation on chromosome 10q in glioblastoma multiforme.	9331071/22479427/20 736378/20462843/191 50964/19276385

PTPN11	Inhibition of SHP-2 expression by Shp-2 siRNA inhibited cell growth, transformation and altered morphology of these EGFRvIII transformed GBM cells.	19427850/21934682
RB1	We found that abnormalities in any of the four genes (CDKN2A, CDKN2B, RB1, and CDK4) coding for components of the Rb1 pathway were associated with shorter survival in glioblastomas patients.	14519639/18816605/2 2157621/21555372
RPS6KA3	/	/
TAF1	/	/
TAF11	TAF11 was overexpressed in glioblastomas relative to non-neoplastic brain tissue as indicated by microarray analysis	18398573
TP53	TP53 mutations were found in 12 out of 54 (22%) GBMs of short-term survivors and 8 out of 35 (23%) tumors of long-term survivors.	11519857/22661320/ 23034333/22886134/2 2287028/21528672/21 483692/20593219/189 48956/18383819/1108 3071/12622447
WEE1	We analyze the kinase gene expression profiles of various tumor types and reveal the WEE1 kinase to be overexpressed in glioblastomas. We demonstrate that WEE1 is a major regulator of the G2 checkpoint in glioblastoma cells. Our results suggest that inhibition of WEE1 kinase holds potential as a therapeutic approach in treatment of glioblastoma	20832752
TRIM24	/	/
IQGAP1	We confirmed that IQGAP1 is a reliable marker that may help to distinguish oligodendroglioma from glioblastoma. Although in both tumors IQGAP1 is expressed by endothelial cells, only in glioblastoma it specifies a population of amplifying tumor cells.	16982749/21196113
AGAP2	We also identify new candidate drivers in GBM, including AGAP2/CENTG1, a putative oncogene and an activator of the PI3K pathway;	20169195

Note:

^{*} The column of PMID lists some of the PubMed IDs of papers supporting that the candidate driver genes may play roles in carcinogenesis of glioblastomas (GBM). The PubMed ID marked with blue color denotes that the detailed description in this paper is provided in the second column.