A comprehensive analysis of the influence of drug binding kinetics on drug action at molecular and systems levels

Ning Yin, Jianfeng Pei and Luhua Lai

Supplementary Material

The reactions for the arachidonic acid metabolic network, as well as the parameters, are listed $below^1$.

Table 1 Enzymatic reactions and competitive feedbacks in arachidonic acid metabolic network

Reactions	Forward rate	Backward rate
	$(\mu M^{-1} min^{-1} or min^{-1})$	(min ⁻¹)
$PL + PLA2 \leftrightarrow PLPLA2$	2	1600
$\mathbf{PLPLA2} \rightarrow \mathbf{AA} + \mathbf{PLA2}$	3600	
$AA+15LOX \leftrightarrow AA15LOX$	20	400
$AA15LOX \rightarrow 15HPETE + 15LOX$	1000	
$AA + 12LOX \leftrightarrow AA12LOX$	21	50
$AA12LOX \rightarrow 12HPETE + 12LOX$	1000	
$\mathbf{15HETE} + \mathbf{12LOX} \leftrightarrow \mathbf{15HETE12LOX}$	10	100
$AA + 5LOX \leftrightarrow AA5LOX$	1020	100
$AA5LOX \rightarrow 5HPETE + 5LOX$	5000	
$12\text{HETE} + 5\text{LOX} \leftrightarrow 12\text{HETE5LOX}$	10	300
$\mathbf{15HETE} + \mathbf{5LOX} \leftrightarrow \mathbf{15HETE5LOX}$	10	40
$PGE2 + 5LOX \leftrightarrow PGE25LOX$	10	150
$\mathbf{5HETE} + \mathbf{5LOX} \leftrightarrow \mathbf{5HETE5LOX}$	10	63
$AA + COX2 \leftrightarrow AACOX2$	22	100
$AACOX2 \rightarrow PGH2 + COX2$	1000	
$PGE2 + COX2 \leftrightarrow PGE2COX2$	10	300
15HPETE + PHGPx	8	60
↔ 15HPETEPHGPx		
$15 HPETEPHGPx \rightarrow 15 HETE + PHGPx$	500	
15HPETE $\rightarrow \emptyset$	0.05	
15HETE $\rightarrow \emptyset$	0.1	
12HPETE + PHGPx	8	60
↔ 12HPETEPHGPx		
$12 HPETEPHGPx \rightarrow 12 HETE + PHGPx$	500	
$\textbf{PGH2} + \textbf{TXAS} \leftrightarrow \textbf{PGH2TXAS}$	405	20
$PGH2TXAS \rightarrow TXA2 + TXAS$	1600	
$PGH2 + PGES \leftrightarrow PGH2PGES$	20	200
$PGH2PGES \rightarrow PGE2 + PGES$	3000	
$AA + PGES \leftrightarrow AAPGES$	100	30

15HETE + PGES \leftrightarrow 15HETEPGES	10	300
$\mathbf{TXA2} \rightarrow \emptyset$	0.8	
5HPETE + 5LOX ↔ 5HPETE5LOX	1020	100
$\mathbf{5HPETE5LOX} \rightarrow \mathbf{LTA4} + \mathbf{5LOX}$	5000	
$\mathbf{5HPETE} + \mathbf{PHGPx} \leftrightarrow \mathbf{5HPETEPHGPx}$	8	60
$\mathbf{5HPETEPHGPx} \rightarrow \mathbf{5HETE} + \mathbf{PHGPx}$	500	
5HETE $\rightarrow \emptyset$	0.001	
LTA4 + LTA4H ↔ LTA4LTA4H	7	15
$LTA4LTA4H \rightarrow LTB4 + LTA4H$	125	
$LTB4 + CYP4F3 \leftrightarrow LTB4CYP4F3$	40	10
$LTB4CYP4F3 \rightarrow \omega LTB4 + CYP4F3$	150	
$\mathbf{12HETE} + \mathbf{CYP4F3} \leftrightarrow \mathbf{12HETECYP4F3}$	100	20
$\mathbf{5HETE} + \mathbf{CYP4F3} \leftrightarrow \mathbf{5HETECYP4F3}$	100	86
$\mathbf{LTB4} \rightarrow \emptyset$	0.01	

The concentrations of the enzymes are subject to transcriptional regulation and feedbacks:

$$\frac{d[15LOX]}{dt} = \frac{k_1[PGE2]^2}{[PGE2]^2 + K_1}$$
$$\frac{d[12LOX]}{dt} = -k_2[15HPETE][12LOX]$$
$$\frac{d[TXAS]}{dt} = -(k_3[15HPETE] + k_4[PGH2])[TXAS]$$
$$\frac{d[5LOX]}{dt} = (k_5[LTB4] - k_6[LTA4] - k_7[5HPETE] - k_8[15HPETE])[5LOX]$$
$$\frac{d[LTA4H]}{dt} = -\frac{k_9[LTA4H][LTA4]}{129(K_2 + [LTA4])}$$

Table 2 Parameters for enzyme feedbacks and transcriptional regulations

$k_1 (min^{-1})$	0.15	$k_7 \ (\mu M^{-1} min^{-1})$	0.01
$k_2 \ (\mu M^{-1}min^{-1})$	10	$k_8 \ (\mu M^{-1}min^{-1})$	0.01
$k_3 \ (\mu M^{-1} min^{-1})$	0.6	$k_9 \ (\mu M^{-1} min^{-1})$	125
$k_4 \ (\mu M^{-1} min^{-1})$	0.1	K_1 (μ M)	0.000023
$k_{5} (\mu M^{-1} min^{-1})$	0.053	K_2 (μM)	20
$k_6 \ (\mu M^{-1} min^{-1})$	0.175		

Table 3 Initial conditions for the species in AA metabolic network

Species	Description	Initial concentration (µM)
PL	Phospholipids	12
PLA2	Phospholipase A2	1.5
PLPLA2	Complex of PL & PLA2	0
AA	Arachidonic acid	0
15LOX	15-Lipoxygenase	1.5

AA15LOX	Complex of AA & 15LOX	0
15HPETE	15-Hydroperoxyeicosatetraenoic	0.001
	acid	
12LOX	12-Lipoxygenase	0.5
12HPETE	12-hydroperoxyeicosatetraenoic	0.001
	acid	
AA12LOX	Complex of AA & 12LOX	0
5LOX	5-Lipoxygenase	5
AA5LOX	Complex of AA & 5LOX	0
5HPETE	5-Hydroperoxyeicosatetraenoic	0
	acid	
12HETE5LOX	Complex of 12HETE & 5LOX	0
15HETE5LOX	Complex of 15HETE & 5LOX	0
PGE25LOX	Complex of PGE2 & 5LOX	0
5HETE5LOX	Complex of 5HETE & 5LOX	0
COX2	Cyclooxygenase-2	0.8
AACOX2	Complex of AA & COX2	0
PGH2	Prostaglandin H2	0.001
PGE2COX2	Complex of PGE2 & COX2	0
PHGPx	Phospholipid-hydroperoxide	0.8
	glutathione peroxidase	
15HPETEPHGPx	Complex of 15HPETE & PHGPx	0
15HETE	15-Hydroxyeicosatetraenoic acid	0.001
12HPETEPHGPx	Complex of 12HPETE & PHGPx	0
12HETE	12-Hydroxyeicosatetraenoic acid	0.001
TXAS	TxA2 synthase	0.1
PGH2TXAS	Complex of PGH2 & TXAS	0
TXA2	Thromboxane A2	0.001
PGES	Prostaglandin E2 synthase	0.5
PGE2	Prostaglandin E2	0.001
PGH2PGES	Complex of PGH2 & PGES	0
AAPGES	Complex of AA & PGES	0
15HETEPGES	Complex of 15HETE & PGES	0
5HPETE5LOX	Complex of 5HPETE & 5LOX	0
LTA4	Leukotriene A4	0.001
5HPETEPHGPx	Complex of 5HPETE & PHGPx	0
5HETE	5-Hydroxyeicosatetraenoic acid	0.001
LTA4H	Leukotriene A4 hydrolase	0.76
LTA4LTA4H	Complex of LTA4 & LTA4H	0
LTB4	Leukotriene B4	0.001
LTB4CYP4F3	Complex of LTB4 & CYP4F3	0
CVD/E2	$I_{eukotriene} B(4)$	0.07

	omega-hydrolase 2	
wLTB4	20-hydroxy leukotriene B4	0.001
15HETE12LOX	Complex of 15HETE & 12LOX	0
12HETECYP4F3	Complex of 12HETE & CYP4F3	0
5HETECYP4F3	Complex of 5HETE & CYP4F3	0

1. K. Yang, W. Ma, H. Liang, Q. Ouyang, C. Tang and L. Lai, *PLoS Comput Biol*, 2007, **3**, e55.

Fig. S1 Concentration of the catalytic active enzyme-substrate complex over time, under different inhibitors. When k_{off} of the inhibitor is larger than that of the substrate (0.5s⁻¹), [ES] rises after an initial drop, producing more products.

Fig S2 An example calculation of the influence of kinetics on enzyme inhibitory effect for mixed-type inhibition. All parameters were identical to Fig. 2, except that the binding of either substrate or inhibitor would slow the association rate of the other by tenfold. The graph shows features both from Fig. 1 (low concentration end) and Fig. 2 (high concentration end).