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Supplementary Table S1: Summary of the mass spectrometric methods used for
determination of disulfide connectivity

Mass
spectrometric
methodology for
Disulfide
crosslink
determination

Main features

Disadvantages

DisConnect perspective

1. Morris R. et al
(1985)

2.Yazdanparast R.
et al. (1986,
1987)

3. Caporale C. et
al (1996)

4. Fenyd D. et al
(1997)

5. Craig R. et al
(2003)

(Protein
Disulfide
Linkage
Modeller)

6.
ProteinProspector
(MS-Bridge)
(Baker, P.R. and
Clauser, K.R.

http://prospector
.ucsf.edu)

7. MS2DB
(Murad et al
(2011) (MS2DB)

8. Gupta K. et al
(2010)

Comparison of MS profiles of the
proteolytic digests of native and
reduced protein identifies disulfide
bonded peptides

Mass shift in gas phase Xe-assisted
reduction of the proteolytic
fragments of native protein
identifies disulfide bonded peptides

All possible combinations of
theoretically generated linear
peptide fragments, containing no
more than 3 cysteines, are matched
against experimental proteolytic MS
profile to infer the structure of the S-
S bonded peptides

All possible combinations of
theoretical proteolytic fragments are
matched against experimental
proteolytic MS profile to infer the
structure of the S-S bonded peptides

Implementation of a software
system based on Fenyé disulfide
assignment algorithm

Theoretically generated proteolytic
fragments are combined and
matched against MS profile to
obtain probable structures of S-S
bonded peptides

MS/MS assignments of disulfide
intact peptides, annotating the
Biemann type ions.

MS" analyses of intact disulfide
bond containing native peptides
provides S-S connectivity

1. Manual assignments can be
prohibitively tedious for large
proteins

2. Unambiguous assignments
cannot be made if multiple
cystines are present in a
proteolytic fragment

Same as [1]

1. Unambiguous assignments
cannot be made if multiple
cystines are present in a
proteolytic fragment

2. Cannot identify a proteolytic
fragment containing more than 3
cystines

1. Unambiguous assignments
cannot be made if multiple
cystines are present in a
proteolytic fragment

1. Unambiguous assignments
cannot be made if multiple
cystines are present in a
proteolytic fragment

1. Unambiguous assignments
cannot be made if multiple
cystines are present in a
proteolytic fragment

1. Complete analysis of all the
modes of fragmentation cannot be
achieved. Hence non Biemann-
type ions, arising through
fragmentation at the disulfide and
inside the

S-S loops cannot be annotated.

1. Tedious manual interpretation
of the data

2. Probable experimental
difficulties in direct fragmentation
of larger proteins

e DisConnect
generates specific
proteolytic
fragments. Non-
cysteine
containing
fragments are
matched directly
against proteolytic
MS profile;
whereas for
cysteine
containing
fragments, all
possible
combinations are
queried.

e  Ambiguities
arising from
multiple structure
hits for an
experimental m/z
value can be
solved by
querying its MS?
fragment ions
against the
probable hits,
using DisConnect-
Pep.

e  For proteolytic
fragments with
multiple cystines,
disulfide
connectivity is
determined by
MS" analysis,
using DisConnect.
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Supplementary Figures:
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Fig. S1: Detail flowchart description of

DisConnect.
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Fig. S2: 15 possible disulfide foldamers of Ar1446
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Fig. S3: Mass spectra of (a) Native and (b) trypsin digest Ar1446.
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Fig. S4: 12 possible disulfide foldamers of tryptic Ar1446
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Fig. S5: DisConnect output for the major fragment ions present in the CID MS? spectrum
of the tryptic Ar1446.
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Fig. S6: (a) HPLC profile of the linear peptide. (b) HPLC profile of the oxidized mixture.
Identical mass spectra for each of the HPLC fractions, corresponding to the two disulfide

bonded peptide, establish the three peaks as three foldamers.
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Fig. S7: DisConnect predicted structures of the key fragment ions observed in the MS?

spectra of des bromo Mo01277.



Electronic Supplementary Materia

| (ESI) for Molecular BioSystems

This journal is © The Royal Society of Chemistry 2013

@) 876.3 9473
1.5
1o
s
00 820 840 86 830 900 920 - 540 960 miz
b) 636 (III): SARVC3C4
- SARVC3  549.24 0[135/0]0
ARVC3C4 54921 69[135/0]0
1001 RVC3C4 47817 69]135[0[0
NH SARV 414.17
A -[v] SAR 31517 -C,-OH
]
& -[8A]
50 - = -HS, [ -H,8,
& O % l =
SEIE T
| T e | 2] |3
o4 i -‘Lll;‘ A l .L"' Ky L““' FwEy J
300 390 400 4490 2900 9490 600 miz

Fig. S8: (a) CID MS? spectrum of the ion at m/z 975.3 yielding 876.3, establishing parent

product ion relationship among these ions. (b) CID MS® spectrum of the ion at m/z

636.1from Foldamer 1 of des bromo Mo1277. All the fragment ions can only be

explained from structure 636.1(c).
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tryptic peptides of a-lactalbumin. (d) MS?

spectra of the MS? ion at m/z 668.4. The presence of the ions at m/z 581.4 and 515.4

confirms t

he structure | for 668.4.
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Fig. S10: Tryptic peptide 1-8 of lysozyme. Peptide 1-5 correspond to non-cysteine
containing peptides. Peptide 6 and 7 contain one pairs of cysteine, whereas peptide 8 two

pairs.



Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2013

%107 + wf 1@ | WWCN | NLCNIPCSALLSS | DITASVNCAK
=] ] +
=+ 34 G :
ol ey ] ;;,ﬂ WWgN ® Peptide &
23 = é é =
1 -+
] o NLENIPESALLSS
14
] l DITASVN%AK
0e 4 NLC2NI 0' " | W T IV vl I S el el
00 750 200 250 Q00 950 1000 1050 miz
] £ 1383.60%
DITASXXMAK e - © WW(IN
t g to % PL3SALLSS
0.6 {NLC2NI | DITASVNC4AK '] & =l t
3 % % WWCIN | PC3SALLSS
% E - t
% 2 &
B g
0449 - ] -
]
138I2 I 138I4 I 138|6 I I EEIO
) 1281.31 ¥ .
0.2 1 2 1190.61 it G
£ "
OO-MA“MWMMLBJ\L | .LJMA. —laa ll\ :
200 00 1000 1100 1200 1200 1400 1500 miz

Fig. S11: CID MS? spectrum of peptide 9 obtained by Asp-N digestion of the tryptic
digest. Inset (a) shows the MS profile of the peptide. Expansion of m/z region 1382.6

shows the co-presence of a doubly and singly charged species. The structure of the ion at
m/z 1382.69 establishes C1-C3 connectivity.
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Fig. S12: DisConnect predicted possible structure/s of the major fragment ions present in
the MS? spectrum of peptide 9.
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Fig. S13: Scheme of generation of the proteolytic peptides and the determination of

disulfide connectivity in lysozyme.

Lysozyme:
Hen egg white lysozyme is a 129 residue protein that contains eight cysteines

that form four disulfide bonds. There are 105 possible ways four disulfide bonds
can be formed between eight cysteine residues. The intact native protein was
subjected to trypsin digestion and subsequently analyzed through LC-MS/MS
analysis. MS profile of the tryptic digest shows 8 peptides, for which the
structures were obtained through the DisConnect (Fig. S10). While the peptide
[1]-[5] corresponds to peptides without cysteines; peptide [6]-[8] contain
cysteines. A quick inspection of these peptide structures reveals that both
peptide [6] and [7] contain a pair of cysteine each. This unambiguously proves
that the pair of cysteine present in each of these peptides are disulfide bonded,
determining the connectivity for two of the four disulfide bonds. To find the
connectivity of the other two disulfide bonds, we turn our analysis to peptide [8]
that contains the remaining two disulfide bonds. Presence of two Asp residues in
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this peptide presents a possibility of further proteolytic digestion by Asp-N, which
results in a shorter proteolytic peptide (Peptide [9], Fig. S11(a)). Fig. S11 and
S12 show the CID fragmentation spectra of (M+3H)** species of [9] and the
structures of the corresponding fragment ions. The structure of singly charged
ion at m/z 1382.69 unambiguously brings out the connectivity pattern. The
structure contains a Cys residue in each of the segment (C1 and C3), thus
dictating a C1-C3 connectivity. Similarly the structure of the ion at m/z 788.91%
establishes the C2-C4 connectivity. This means that the cysteine connectivity in
[9] is C1-C3/ C2-CA4. Interestingly, the isotopic distribution of this ion merges with
the same of a doubly charge ion of m/z 1383.60. Expansion of the m/z region
establishes the existence of two ions. This connectivity is further supported by
the both probable structures of the ion at m/z 1190.61. Both of these two
structures demand a disulfide bond between C1 and C3. This also illustrates the
point that it is not essential to determine structure of every fragment ion with
absolutely certainty to determine the disulfide connectivity. This proves the
overall disulfide connectivity in lysozyme to be Cysl1l-Cys8, Cys2-Cys7, Cys3-
Cysb, and Cys4-Cys6 (the Cys residues are number as Cys;, where i stands for
the residue number as per the overall protein sequence, analysis schematically

summarized in Fig. S13).

11



Electronic Supplementary Material (ESI) for Molecular BioSystems
This journal is © The Royal Society of Chemistry 2013

S| Materials and Method

A. Experimental Protocol
Protocol of synthesis of foldamers

The linear peptide is synthesized using standard Fmoc chemistry, as described
previously. The folding reaction was carried by dissolving 5 nmol of linear peptide in
200uL of oxidation buffer containing 100mM NH4HCO3 (pH 8.0) and 10% of dimethyl
sulfoxide (DMSO). The progress of reaction was monitored using mass spectrometry
and quenched after 24 hr by acidification with formic acid (10% final concentration).
Reaction mixture was subjected to C;g analytical column, peptides were eluted over a

linear gradient of 20-26 % acetonitrile and fractions were detected at 226 nm.

B. Description of input/output format of DisConnect

l. Analyses of proteolytic fragments:

Input/Output Format
The entire polypeptide sequence, experimental m/z values, along with their charge
states, and a choice of protease are the primary input. In the case of multiple peptide
chains, an X is inserted between every two peptide chains. Paste the protein sequence,
ending with a * symbol, in the file "prot_seq". Put the m/z values and the charge states
of the queried ions, in the format 'm/z value'space'charge state' (e.g. 1020.2 3, where
the m/z value is 1020.2 and charge state 3) in the file 'peak_mass_ms'. Depending on
the resolution of the experimental setup, the mass error range and mass type
(monoisotopic / average) can be chosen. The user also has a handle on choosing the
number of miscleavages. The theoretical peptide structures, with their masses within
the user specified error range from the queried values, are the outputs. Their
corresponding (M+H)+ values and the number of Cys residues present are also shown.
. In the output for probable structures, discontinuous peptide chains (hereafter referred
to as segments) are separated by a ‘|'. For chemical feasibility, it is imperative that such
segments must be held together by S-S bonds. A provision is also made in DisConnect

to study the structure of ions arising through probable neutral losses. This option is

12
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useful when a key product ion is not obtained, but an ion obtained by subsequent

neutral loss is present.

Il Analysis of the MS" fragment ions:

Input/Output Format

The sequence of the polypeptide is entered by the user. Polypeptide sequence can be
entered using the standard one letter codes. For peptide containing multiple chains, like
insulin, a letter X should be entered between the two chains (e.g if a peptide contains
two polypeptide chains with sequence GVCSF and RLTCY then the input is
GVCSFXRLTCY). For user benefit, if these peptides are results of proteolytic digestion
then an input file in the Result MS folder is created, named
"Inp_MSn_match_MS_protein name.out" that contains the peptide sequence in the
required format for the MS2 analysis. The user can copy the respective sequence from
there and paste it. For MSn analysis, format of the complete sequence is as above. For
the daughter ion (the ion undergoing MSn fragmentation) the input sequence is given
inside the Resut MSn folder, termed as input for MSn_rigorous/smart_Entered
complete/fragment sequence. Copy the corresponding structure of the ion undergoing
MSn fragmentation from this file. The m/z of the MSn fragment ions, with the charge
states, also goes into the program as user input. Put the m/z values of the fragment
ions, in the format 'm/z value'space'charge state' (e.g. 1020.2 3, where the m/z value is
1020.2 and charge state 3)in the file 'peak _mass_ms2' (for MS2) or 'peak_mass_msn'
(for MSn). Depending on the resolution of the experimental setup, user has the freedom
to tune the error range in mass accuracy and mass type (monoisotopic/average). An
array of other input choices is available to the user. The output of the program contains
probable structure/s of each MSn fragment ion. In the output for probable structures,
discontinuous peptide chains (hereafter referred to as segments) are separated by a ‘|
For chemical feasibility, it is imperative that such segments must be held together by S-
S bonds. For those Cys containing outputs that have iterative Cys residues (number of
Cys > 2[n-1], n being the number of segments), the possible residue mass
arrangements of the Cys are also shown. It is to be noted that the output shows the

calculated m/z values within the user specified mass error range. In this present study,
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performed in ion trap mass spectrometer, we have used a lenient m/z cut off of 0.2Da
while querying both the proteolytic and MSn fragments. All the program outputs, shown,

are derived using the ‘smart’ mode of DisConnect.
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