Name	Type	Sequence	Length
	Upper	GCATCCTGGGCTACACTGAG	
GAPDH	Lower	TCCACCACCCTGTTGCTGTA	163bp
	Probe	TCCTCTGACTTCAACAGCGACACCC	
	Upper	GGAGAAGTCTCGGGTTTG	
CDKAL1	Lower	ATCCTCAGCGCACAGTCT	155bp
	Probe	CCACACCTCTGCTGCATCTCAGTG	
	Upper	CACCAGAGGCAGTAACCA	
CDKN2A	Lower	AGTTGTGGCCCTGTAGGA	139bp
	Probe	CCCGATTGAAAGAACCAGAGAGGC	
	Upper	CGAGGAGAACAAGGGCAT	
CDKAN2B	Lower	CATCATGACCTGGATCGC	160bp
	Probe	GGGACTAGTGGAGAAGGTGCGACA	-
	Upper	CACCGGAAGCCCAGTTCAA	
IGF2BP2	Lower	CCACCTTTGCCAATCACCC	145bp
	Probe	TGAAGCTGGAAGCGCATATCAGAG	1
	Upper	CTGTGACACCAGAACGCATT	
AR	Lower	GGTAATCCTTGTGGGAGGTA	141bp
	Probe	TGAACTGAGCAGCCAGGATATGACCACCTT	1
	Upper	ATCAGGGCTGGGAACTCTAG	
AGER	Lower	GATTCAGTTCTGCACGCTCC	16bp
	Probe	GCTCATTGGGGTCATCTTGTGGCAAAGG	I
	Upper	TTCTCCAACTGGACCTCAA	
GLUT1	Lower	GCCTTTAGTCTCAGGAACTT	147bp
	Probe	TGGAGCAACTGTGTGGTCCCTACGTCTTCA	1
	Upper	GAAAACCAAAATCCATGCAAATG	
IGF2	Lower	TGAGTGCTTTTTAGGATGGGAATT	88bp
	Probe	AATGTAATTGGCACGACCCTCACCCC	r
	Unner	CCTGCAAACTTCGGTAAATGTG	
AGT	Lower	CTTAGTGATCGATGCAGAGTTTCAC	81hn
	Probe	ACTCGACCCTGCACCGGCTCA	orop
	Unper	GAGCTCCCCTGGTTCCATTC	
ADRB3	Lower		70hn
ADRD5	Drobe	тстесслессалассствателени	700p
AGTR2	Iloper	CCACCCTTGCCACTACTAGCA	
	Lower		73hn
	Drobe		730p
	Unper		
ACE	Lower		67n
	Droho		070
	Linnar		
PRKCA	Upper		155bp
	Lower	UUTICAAAAICAGAUIGGI	1

Table S1 Sequence information of primers and probes

	Probe	TTTGACAAGTTCTTCACACGAGGACAGCCC	
	Upper	GGGCTATGTCTTCCAGAAGG	
MTHFR	Lower	TACGGTGGGCTGGATGATCT	211bp
	Probe	GACAAGGTGGTAATTAACCCGGAGCTCG	

Gene	Standard curve	R^2
GAPDH	CT=-3.72log(copy)+45.66	0.9992
CDKN2A	CT=-3.85log(copy)+45.76	0.9996
CDKN2B	CT=-3.56log(copy)+45.01	0.9991
IGF2BP2	CT=-3.92log(copy)+41.47	0.9916
CDKAL1	CT=-3.86log(copy)+43.04	0.9976
AR	CT=-3.01log(copy)+43.79	0.9972
AGER	CT=-3.76log(copy)+44.06	0.9983
GLUT1	CT=-3.37log(copy)+46.14	0.9944
IGF2	CT=-4.70log(copy)+58.08	0.9964
AGT	CT=-3.81log(copy)+48.08	0.9981
ADRB3	CT=-3.90log(copy)+49.64	0.9962
AGTR2	CT=-3.70log(copy)+48.68	0.9997
ACE	CT=-4.26log(copy)+52.44	0.9993
PRKCA	CT=-3.75log(copy)+46.55	0.9995
MTHFR	CT=-3.74log(copy)+46.43	0.9987

Table S2 Quantitative formulas of gene expression

Compound	Control	DM	DN stage 3	DN stage 4	DN stage 5
Lyso-PC(16:0)	995.3 ± 97.3	1444 ± 163	1399 ± 183	1359 ± 193	794.5 ± 154.9
Deoxycorticosterone	3.38 ± 2.80	14.08 ± 13.38	15.08 ± 15.12	185.2 ± 133.9	326.5 ± 107.2
Lyso-PC(18:2)	739.4 ± 63.8	1027 ± 103	966.9 ± 159.3	892.5 ± 113.3	620.6 ± 118.2
Lyso-PC(18:0)	623.4 ± 89.4	674.0 ± 183.7	958.0 ± 198.2	797.1 ± 170.0	369.3 ± 108.4
Lyso-PC(18:1)	422.2 ± 50.3	550.8 ± 114.4	615.0 ± 91.3	583.2 ± 101.5	332.4 ± 68.3
Corticosterone	0.71 ± 0.87	3.23 ± 3.96	4.19 ± 4.63	53.55 ± 46.04	118.1 ± 46.2
Pidolic acid	2.50 ± 1.27	9.12 ± 3.47	9.80 ± 3.22	61.39 ± 49.61	209.4 ± 62.2
L-kynurenine	72.00 ± 15.67	82.54 ± 21.73	68.60 ± 12.63	100.6 ± 49.6	156.2 ± 37.1
Lyso-PC(20:4)	100.6 ± 10.51	178.6 ± 25.7	152.3 ± 29.6	199.4 ± 30.6	125.7 ± 28.1
Lyso-PC(20:3)	68.53 ± 7.98	103.1 ± 19.5	88.84 ± 40.37	75.11 ± 13.51	37.82 ± 7.13
Lyso-PC(22:6)	75.36 ± 12.76	87.38 ± 31.38	87.08 ± 28.45	66.59 ± 8.81	34.03 ± 10.32
L-valine	230.1 ± 21.2	272.5 ± 43.6	236.8 ± 42.2	213.6 ± 62.5	79.72 ± 13.32
Leucine/Isoleucine	63.23 ± 4.56	74.96 ± 7.96	70.08 ± 7.57	71.67 ± 15.83	29.47 ± 4.43
L-tryptophan	22.8 ± 2.66	21.94 ± 3.28	22.99 ± 4.30	22.29 ± 8.23	13.36 ± 3.17

Table S3 Quantification results of the potential biomarkers from metabolomics

Table S4 Quantification results of the potential biomarkers from absolute quantitative experiments

Compound	Control	DM	DN stage 3	DN stage 4	DN stage 5
Adenosine, mg/L	0.136 ± 0.030	0.138 ± 0.029	0.295 ± 0.071	0.540 ± 0.080	1.870 ± 0.407
Uric acid, mg/L	46.53 ± 3.06	58.62 ± 5.66	60.46 ± 8.60	64.87 ± 7.85	76.45 ± 5.65
Xanthine, mg/L	0.477 ± 0.062	0.554 ± 0.159	0.663 ± 0.131	0.839 ± 0.179	2.034 ± 0.657
Cytidine, mg/L	0.046 ± 0.012	0.051 ± 0.007	0.056 ± 0.014	0.091 ± 0.021	0.296 ± 0.069
Cytosine, mg/L	0.115 ± 0.015	0.194 ± 0.038	0.293 ± 0.076	0.305 ± 0.069	0.520 ± 0.167
Inosine, mg/L	0.077 ± 0.012	0.080 ± 0.015	0.284 ± 0.021	0.319 ± 0.079	0.947 ± 0.346
Thymidine, mg/L	0.028 ± 0.005	0.039 ± 0.012	0.081 ± 0.030	0.122 ± 0.054	0.339 ± 0.093
Homocystein, µg/L	704.3 ± 265.3	729.5 ± 370.2	764.6 ± 349.9	1069 ± 398	1773 ± 842
S-adenosylmethionine, µg/L	13.01 ± 4.17	14.13 ± 4.08	14.71 ± 5.70	27.82 ± 11.72	30.91 ± 18.36
S-adenosylhomocysteine, µg/L	6.00 ± 4.18	6.75 ± 2.75	10.26 ± 5.62	26.35 ± 10.70	116.4 ± 68.7
Glutathione, µg/L	915.0 ± 352.6	762.7 ± 296.7	644.2 ± 237.2	618.7 ± 244.5	596.7 ± 181.3
PC (C16:0/C18:2), mg/L	639.0 ± 34.2	549.5 ± 44.7	591.3 ± 62.2	534.7 ± 108.8	508.7 ± 44.3
PC (C16:0/C17:0), mg/L	402.4 ± 74.9	292.4 ± 107.3	357.4 ± 72.0	320.0 ± 100.3	313.4 ± 77.5
PC (C16:0/C20:4, C18:2/C18:2), mg/L	191.8 ± 49.9	172.8 ± 50.2	169.7 ± 49.4	159.6 ± 39.8	171.4 ± 53.3
PC (C18:0/C18:2, C18:1/C18:1), mg/L	286.9 ± 58.9	227.5 ± 69.5	247.1 ± 52.5	234.1 ± 73.1	223.7 ± 62.0
PC (C16:0/C22:4, C18:0/C20:4), mg/L	132.7 ± 10.5	114.9 ± 11.9	113.7 ± 13.7	109.4 ± 19.4	105.9 ± 12.8
SM (dC18:1/C16:2),	190.7 ± 10.8	173.9 ± 22.2	209.3 ± 38.0	213.5 ± 38.9	93.37 ± 19.94

mg/L					
PE (pC18:0/C20:4,	55 10 + 0 50	45 26 + 11 92	42.05 + 12.14	20.49 ± 10.02	20.22 + 5.29
pC16:0/C22:4), mg/L	33.18 ± 8.32	43.30 ± 11.82	42.05 ± 15.14	50.48 ± 10.02	29.25 ± 3.38
PI (C18:0/C20:4,	27.22 ± 0.21	21.04×7.67	40.22 + 9.92	20.02 + 10.72	07.00 . (40
C18:1/C20:3), mg/L	37.32 ± 8.21	31.84 ± 7.67	40.32 ± 8.82	38.02 ± 10.73	27.82 ± 6.40
LysoPC C16:0, mg/L	30.18 ± 3.08	35.89 ± 7.23	33.11 ± 7.82	36.65 ± 9.03	23.33 ± 2.80
C12:0, mg/L	1.51 ± 0.23	1.06 ± 0.17	1.60 ± 0.61	1.11 ± 0.51	1.20 ± 0.26
C18:0, mg/L	42.08 ± 23.34	56.97 ± 18.84	59.32 ± 14.39	27.45 ± 9.61	47.37 ± 13.01
C18:2, mg/L	204.8 ± 115.8	293.9 ± 108.3	277.4 ± 75.3	126.1 ± 57.0	215.6 ± 98.1
C20:2, mg/L	2.18 ± 0.49	3.50 ± 1.70	3.29 ± 0.97	2.13 ± 0.68	2.45 ± 0.35
C20:3, mg/L	12.18 ± 7.37	23.32 ± 14.91	21.34 ± 8.78	10.47 ± 4.42	12.87 ± 3.69
C20:4, mg/L	44.78 ± 29.15	93.62 ± 36.82	88.38 ± 24.61	42.95 ± 27.48	67.30 ± 21.05
C20:5, mg/L	5.29 ± 4.07	6.07 ± 3.41	5.26 ± 1.65	2.75 ± 1.24	3.89 ± 1.24
C22:6, mg/L	21.10 ± 18.45	61.51 ± 35.71	68.92 ± 37.56	24.67 ± 26.52	29.35 ± 13.39

Metabolite	Critical concentration	Sensitivity	Specificity	Positive predictive value	Negative predictive value	
Lyso-PC(18:0)	881.0	0.722	0.750	0.743	0.730	
Inosine	0.162 mg/L	0.889	1.000	1.000	0.900	
Cytosine	0.245 mg/L	0.667	0.917	0.889	0.734	
Thymidine	0.062 mg/L	0.833	0.917	0.909	0.846	
SAH	7.133 μg/L	0.722	0.750	0.743	0.730	

Table S5 Critical concentrations and corresponding sensitivity and specificity of the five metabolites

Figure S1 Score plot of the PCA analysis in metabolomics

Figure S2 Score plot of the PLS-DA analysis in metabolomics

Figure S3 Validation models of a 100 random permutation test for the PLS-DA model, Y-axis intercepts: $R^2 = (0, 0.884), Q^2 = (0, -0.0887)$

Figure S4 Forty potential biomarkers in metabolomics and their related metabolic pathways

Figure S5 Quantitative results of fourteen key genes (expression ratio of patients to control)