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Fig.S1 Size of the ensembles C and CP as a function of number of edges in the network. The horizontal axis shows the number of edges in the network. 

The vertical axis shows the number of networks in logarithmic scale. Inset: Zoom to show the plot for the lowest values of the number of edges. 
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Fig.S2 Ratio of the number of networks in the CP ensemble versus that in the C ensemble as a function of number of edges in the network. Inset: Zoom to 

show the plot for the lowest values of number of edges. 
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The counting of networks in the C and CP 
ensembles  
Since the number of networks in our ensembles is astronomical, it 
is not possible to count them by explicit enumeration. 
Nevertheless, in the cases of C and CP, it is possible to use 
algebraic methods to obtain the exact sizes of these sets. In 
practice, the calculation requires a lot of tedious operations, so we 
have implemented them in a Mathematica notebook 
(Supplemental Information, File S1). We explain here the logic of 
the algorithm. 
 
To encode the set of interactions of a network of 15 genes, it is 
necessary and sufficient to specify the list of incoming edges for 
each gene. In practice, we use a binary 15 by 15 matrix A, 
hereafter referred to as the incidence matrix; its entry Aij (in row i 
and column j) is 1 if there is an edge from node j to node i, 
otherwise it is 0. For computational convenience, it is possible to 
encode each line of 15 bits into a number from 0 to 215-1 using its 
binary code. 
 
As a pedagogical exercise, let us first count all possible incidence 
matrices having exactly M non-zero entries. The calculation is 
based on treating that constraint using generating functions in a 
“variable” X whose power is the number of entries set to 1. 
Specifically, for each line i, define the polynomial in the variable 
X 

 P(X) = n0X
0 + n1X

1 +...+ n15X
15   

where nk is the number of ways of having exactly k of the entries 
on that line set to 1 if one ignores any constraint on the total 
number of edges; for this illustrative case, nk is just the binomial 
coefficient associated with choosing k elements among 15. Now 
taking the product over all rows i, we obtain a polynomial which 
is the “generating function” of the number of incidence matrices 

 Z(X) = Pi (X)
i=1

15

∏   

Indeed, when expanding Z in powers of X, we obtain 

 Z(X) = n(p)X
p
∏

p   

where n(p) is the number of incidence matrices having a total of p 
entries set to 1. Solving the present exercise then boils down to 
first computing Z(X) as a product of known polynomials and then 
extracting its coefficient n(M) which multiplies XM.  
 
The counting of the number of networks in C can be tackled by 
generalizing in a non-trivial way the previous calculation. The 
main source of difficulty comes from the constraint that the total 
number of edges outgoing from a given leaf node is fixed (set to 
1). To deal with this, we introduce a variable for each leaf node: 
let U, V, and W be these three variables so that for instance the 
power of V gives the number of times an edge leaves the second 
leaf node. The polynomial Pi to consider now is a function of 4 
variables, X, U, V, and W: it is defined as the generating function 
for all ways to specify input edges to gene i while respecting all 

constraints in C except the one on the total number of edges. For 
instance the coefficient of U W Xk in Pi is the number of ways to 
specify k inputs to gene i when using one edge from leaf node 1, 
zero from leaf node 2, and one from leaf node 3. Because in fact 
each leaf node has one output, there are no terms of degree 2 or 
higher for U, V, or W. The computation of this polynomial Pi of 
four variables must also take into account the constraint that there 
must be at least one input (k ≥ 1) and if there is a self interaction, 
there must be at least one other input. We have determined all 
coefficients of each Pi within a Mathematica code. The next step 
is to compute the product of all these Pi, thereby constructing the 
generating function Z(X,U,V,W) for counting networks in C. 
When performing the products of the Pi, we take advantage of the 
fact that terms of degree 2 or higher for U, V and W are 
forbidden so Mathematica sets them to zero on the fly. 
Furthermore, since the leaf nodes have no inputs, their Pi is equal 
to 1 and so can be omitted in the product defining Z(X,U,V,W). 
The number of networks in C is then obtained by extracting the 
coefficient of U V W XM in Z(X,U,V,W). 
 
The computation of the size of CP follows the same strategy. The 
key point is that because the phenotypic viability constraint 
corresponds to imposing 10 steady states on the gene expression 
patterns, one has in fact a list of independent constraints, 10 for 
each gene, that can be incorporated separately on each 
Pi(X,U,V,W). For a given i, the Mathematica code in fact scans 
all values of k from 1 to 15 and enumerates all possible choices of 
k inputs to gene i; it then checks whether the constraints of C are 
satisfied, and if they are it checks whether one can have a 
Boolean function taking the inputs to the correct output for all 10 
steady states. This last step considers the structure of the truth 
table for the Boolean function and verifies whether the 10 
constraints lead to any contradiction, i.e., whether identical inputs 
are supposed to produce different outputs. Once the Pi are 
computed in this way, the rest of the algorithm proceeds as for C. 
 
In principle, the same approach could be used to count the 
number of elements in the CD and CDP ensembles. Because the 
out-degree of every gene is now imposed just as it was for the 
leaf nodes in C and CP, it is necessary to introduce one variable 
for each gene. Our formalism thus requires handling polynomials 
of 15 variables. The Mathematica code is able to produce the Pi 
but they involve a huge number of terms. Then in practice it is 
not possible to compute the product of these polynomials, 
preventing one from extracting the desired coefficient. Note that 
even without any phenotypic constraint, this counting problem is 
just too difficult and except for small networks, only approximate 
counting methods are practical. 
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Table S1 Comparison of frequency of 1, 2 and 3-node subgraphs in the Arabidopsis network with ensembles C, CP, CD and CDP. The table lists the 
mean and standard deviation of the frequency of subgraphs in each ensemble. The table gives the Z-scores for each subgraph in the Arabidopsis network 
when benchmarked against the ensembles C, CP, CD and CDP. 

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1–node Self Edge
A → A 4 0,310 -1,218 0,117 -1,600 3,532 1,512 5,783 1,464 3,861 1,188 5,565 0,978

2–node Mutual Edge
A ↔ B 10 2,379 2,771 1,826 2,297 5,807 1,763 5,253 1,713 7,335 1,459 6,872 1,362

A ← B → C 5 -2,146 -2,099 -1,542 -1,845 14,724 4,531 14,398 4,478 9,369 2,833 10,632 3,052

A → B ← C 19 -0,432 -0,232 -1,360 -1,047 21,356 5,457 20,208 5,201 24,991 4,406 23,504 4,302

A → B → C 18 -2,217 -2,126 -0,978 -0,922 36,425 8,310 35,535 8,249 24,394 6,540 23,849 6,342

A ↔ B ← C 23 1,612 2,029 0,114 0,357 14,895 5,029 13,302 4,781 22,455 4,794 21,382 4,532

A ↔ B → C 14 0,364 0,539 1,446 1,280 12,459 4,238 11,744 4,185 9,520 3,098 9,798 3,281

A ↔ B ↔ C 6 1,642 1,983 1,183 1,469 2,474 2,147 2,108 1,963 3,338 2,250 2,906 2,106

A → B → C, A → C 8 -0,766 -0,513 -0,470 -0,253 12,053 5,289 10,403 4,689 9,860 3,960 8,895 3,534

A ← B ← C, A → C 0 -1,698 -1,668 -1,271 -1,141 4,143 2,440 3,798 2,277 2,169 1,706 1,790 1,569

A ← B → C, A ↔ C 4 1,061 1,604 -0,414 -0,302 2,395 1,513 1,864 1,332 4,829 2,002 4,546 1,811

A → B ← C, A ↔ C 4 0,979 1,396 0,855 1,176 2,479 1,553 2,034 1,408 2,624 1,609 2,293 1,452

A → B → C, A ↔ C 2 -1,364 -1,055 -1,826 -1,544 4,961 2,170 4,075 1,966 6,242 2,323 5,343 2,165

A → B ↔ C, A ↔ C 7 3,276 4,212 0,882 1,260 1,886 1,561 1,414 1,326 5,079 2,178 4,586 1,916

A ↔ B ↔ C, A ↔ C 2 5,418 6,755 1,618 1,532 0,116 0,348 0,078 0,285 0,682 0,815 0,752 0,814

CDPZ-score
w.r.t.
CDP

3–node

Arabidopsis 
network

Z-score
w.r.t.
C

Z-score
w.r.t.
CP

Z-score
w.r.t.
CD

Subgraph
C CP CD

 
 

Table S2 Comparison of average clustering coefficient in the Arabidopsis network with ensembles C, CP, CD and CDP. The table lists the mean and 
standard deviation of the average clustering coefficient in each ensemble. The table gives the Z-scores for average clustering coefficient in the Arabidopsis 
network when benchmarked against the ensembles C, CP, CD and CDP. 

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

0,6265 2,4362 2,7369 0,3784 0,5271 0,4672 0,0654 0,4383 0,0688 0,5974 0,0768 0,5837 0,0812

CD CDPArabidopsis
network

Z-score
w.r.t.
C

Z-score
w.r.t.
CP

Z-score
w.r.t.
CD

Z-score
w.r.t.
CDP

Average
Clustering
Coefficient

C CP

 

 

Table S3 Comparison of 4 directed assortativity coefficients in the first and fourth quartiles of ensembles CP and CDP where quartiles are based on 
robustness of networks in each ensemble. The table lists the mean and standard deviation of the 4 directed assortativity coefficients in each ensemble 
quartile. 

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

(out,in) -0,248 -0,086 0,125 -0,080 0,126 -0,254 0,085 -0,254 0,084
(out,out) -0,115 0,035 0,131 0,044 0,130 -0,066 0,107 -0,059 0,107
(in,out) -0,113 -0,015 0,132 -0,014 0,134 -0,011 0,109 -0,038 0,110
(in,in) -0,048 0,006 0,131 0,005 0,131 -0,029 0,082 -0,049 0,082

Assortativity
coefficient

Arabidopsis
network

CP Q1 CP Q4 CDP Q1 CDP Q4
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Table S4 Comparison of frequency of 1, 2 and 3-node subgraphs in the first and fourth quartiles of ensembles CP and CDP where quartiles are based on 
robustness of networks in each ensemble. The table lists the mean and standard deviation of the frequency of subgraphs in each ensemble quartile. 

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1–node Self Edge
A → A 4 5,577 1,444 6,003 1,466 5,412 0,997 5,710 0,942

2–node Mutual Edge
A ↔ B 10 5,299 1,731 5,207 1,692 6,973 1,352 6,782 1,368

A ← B → C 5 14,342 4,508 14,491 4,465 10,862 3,100 10,458 3,009

A → B ← C 19 20,578 5,330 19,767 5,038 23,268 4,243 23,726 4,347

A → B → C 18 35,357 8,240 35,605 8,170 23,484 6,221 24,128 6,439

A ↔ B ← C 23 13,569 4,857 13,023 4,680 21,870 4,527 20,944 4,519

A ↔ B → C 14 11,665 4,164 11,806 4,168 9,712 3,296 9,873 3,276

A ↔ B ↔ C 6 2,142 2,006 2,078 1,924 2,856 2,104 2,961 2,132

A → B → C, A → C 8 10,705 4,783 10,133 4,584 8,635 3,443 9,137 3,610

A ← B ← C, A → C 0 3,782 2,291 3,789 2,242 1,787 1,566 1,802 1,573

A ← B → C, A ↔ C 4 1,957 1,366 1,779 1,300 4,589 1,822 4,468 1,789

A → B ← C, A ↔ C 4 2,099 1,437 1,984 1,388 2,214 1,426 2,339 1,456

A → B → C, A ↔ C 2 4,148 1,986 3,998 1,949 5,367 2,172 5,322 2,170

A → B ↔ C, A ↔ C 7 1,493 1,374 1,350 1,276 4,789 1,932 4,409 1,887

A ↔ B ↔ C, A ↔ C 2 0,089 0,305 0,070 0,265 0,859 0,860 0,663 0,763

CDP Q4

3–node

Arabidopsis 
networkSubgraph

CP Q1 CP Q4 CDP Q1

 

 

Computation of p-values  
Given a specific network such as the Arabidopsis one, we wish to 
test the hypothesis H0 that it is typical of a benchmark ensemble 
E of networks generated in silico. (In practice, E is taken as C, 
CP, CD or CDP.) If the network does seem atypical, one rejects 
H0 but doing so there is a small chance that in fact one is doing 
so erroneously. The probability of erroneously rejecting H0 is the 
p-value, and is calculated as follows. A summary statistic S is 
used for the test. Within H0, one computes P(S), the distribution 
of S, for instance by simulation (using the networks in the 
benchmark ensemble), and one also determines S*, the value of 
the statistic for the specific network considered. Then the right-
sided p-value associated with rejecting H0 is the probability that 
the random variable S, distributed according to P(S), will be 
larger than S*. Similarly the left-sided p-value is the probability 
that S will be smaller than S* while the two-sided p-value is 
twice the minimum of the left and right-sided p-values. 
 
When P(S) is Gaussian or expected to be so, it is convenient to 
consider the Z-score of S*. It is defined as the difference between 
S* and the mean of P(S), divided by the standard deviation of P. 
It gives the deviation from the mean in units of standard 
deviation. From it, a p-value can also be extracted reliably as long 
as P(S) is Gaussian. 
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Fig.S3 Degree distributions for the Arabidopsis reference network and networks in the CP ensemble. (A) In-degree distribution. (B) Out-degree 

distribution. 

 

 
Fig.S4 Edge usage in the four ensembles. The incidence matrix captures the presence or absence of an edge in a directed network. If there is a directed 
edge from node j to i then the (i,j)th entry of the incidence matrix is non-zero. Edge usage is the frequency with which a given edge is realized across 

sampled networks for an ensemble. Heat maps show the edge usage for networks in ensembles (A) C, (B) CP, (C) CD and (D) CDP. To reduce statistical 
noise, over 2.106 networks were sampled for case (A). 
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Fig.S5 Average robustness to random edge deletion as a function of the number of edges in the network for the CP ensemble. The blue dots represent the 

probability for a steady state to survive after random edge deletion and the red dots represent the probability to maintain phenotypic viability after 
random edge deletion. 
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