Identification of Calcium binding sites on calsequestrin 1 and its

implications to polymerization

Amit Kumar^{1,#}, Harapriya Chakravarty^{2,#}, Naresh C. Bal^{3,#,*}, Tuniki Balaraju², Nivedita Jena⁴, Gauri Misra⁵, Chandralata Bal², Enrico Pieroni¹, Muthu Periasamy^{3,6}, and Ashoke Sharon^{2,*}

¹CRS4, Bioengineering group, Science and Technology Park Polaris, Piscina Manna, 09010 Pula (CA). Italy; ²Department of Applied Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India; ³Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, OH 43210, United States; ⁴Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; ⁵Institute of Biotechnology, Amity University, Noida, India and ⁶Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio, USA.

[#]The authors contributed equally.

*Corresponding Authors:

Ashoke Sharon; Department of Applied Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India-835215. Tel: 91-651-2276531; Fax: 91-651-2275401; Email: asharon@bitmesra.ac.in

Or,

Naresh C. Bal; Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, OH 43210, United States. Tel: 1614-688-4635; Fax: 1614-2924888; Email: <u>bal.8@osu.edu</u>

Simulation system (with number of Ca^{2+} ions)	RMSD of backbone atom s (in Å)			Entropy (in J/molK)
	CHAIN C	CHAIN B	DIMER	C-TER (residues 350-364)
120	2.8+/-0.5	2.7+/-0.7	3.3+/-0.7	1715
80	3.2+/-0.7	2.8+/-0.4	3.5+/-0.7	1705
40	3.0+/-0.8	3.9+/-0.8	4.9+/-1.2	1859
20	2.7+/-0.5	2.9+/-0.6	4.5+/-1.4	1896
0	3.5+/-0.6	4.0+/-0.9	5.7+/-1.4	1875

Table S1: RMSD and Entropy calculations for CASQ1 in various systems at different $[Ca^{2+}]$.

Supplemental Figure 1

Supplemental Figure 1: Probability of Ca^{2+} -binding at the $[Ca^{2+}]$ dependent intermediate affinity sites on CASQ1. The site 10 (constituted by residues E319, E350 and E354) on CASQ1 is shown as an example of $[Ca^{2+}]$ dependent intermediate affinity sites. (A) Residue E350 of site 10 show high probability of Ca^{2+} -binding at distance below 3.0Å when $[Ca^{2+}]$ in the system is 40 and above. (B) Residue E354 in site 10 show high probability of Ca^{2+} -binding at distance around 3.0Å only when 40 or 80 Ca^{2+} ions are present in the system. But in the system with 120 Ca^{2+} ions the distance between the Ca^{2+} ions and the residue is high. (C) E319 binds Ca^{2+} ion with very high affinity and geometry when system $[Ca^{2+}]$ is 80. E319 does not bind Ca^{2+} ions when $[Ca^{2+}]$ in the system increased to 120. (D) Site 11 (formed by single acidic residue E66) on CASQ1 is a $[Ca^{2+}]$ independent low affinity site. Many (~25 sites) Ca^{2+} -binding sites were found on CASQ1 surface that bind Ca^{2+} without any specific geometry at any $[Ca^{2+}]$ randomly.

Supplemental Figure 2

Supplemental Figure 2: Presence of water molecules around the CAS region of each CASQ1 chain. CAS of chain B which is located at the inter-molecular back-to-back dimeric interface of CASQ1 does not show Ca^{2+} -dependent water binding. On the other hand the CAS of chain C bind more water with increasing Ca^{2+} -binding. It is important to point out that the back-to-back stacking which is stabilized by hydrophobic interactions is not dependent on water mediated stabilization unlike the free CAS.

Supplemental Figure 3

Supplemental Figure 3: The flow chart of method employed in this paper. (A) The hexameric PDB id: 3UOM. (B) Borrowed the coordinates for the chain B and C that are in back-to-back interaction. (C) C-terminal missing residues are added and the incorrect residues are corrected.