
Supplemental Methods 

Before fully developing the condition-specific models of S. Typhimurium in LB and LPM, numerical 

issues were addressed to ensure computational precision.  The cplex solver from the IBM ILOG CPLEX 

Optimization Studio 12.4 was used in conjunction with a Python implementation of the COBRA toolbox.
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To select a numerical tolerance for the solver, an iterative method was employed. Flux balance analysis
2
 

was used, selecting each model reaction in turn as an optimization objective to maximize. Iterative 

optimization identified 10
-8

 as a suitable numerical tolerance for distinguishing reactions that could carry 

flux from those that could not. The reactions that could carry flux in a given media were termed 

“accessible” in the media. 

Next, model genes and metabolites were paired with omics data. Model genes matched directly to 

1,251 probes, giving 98.5% coverage of 1,270 model genes. This left 19 model genes unpaired with the 

microarray. In order to match model metabolites, KEGG
3, 4

 compound identifiers were assigned to 

identified metabolites. We were able to match 59 of 65 metabolites identified in LB culture and 59 of 64 

metabolites identified in LPM culture to the model (Table SMT1). 

Before building the fully omics-informed, constrained models, the ability to produce detected 

metabolites was investigated. As will be fully described elsewhere (Schmidt et al., in preparation), the 

Gene Inactivation Moderated by Metabolism, Metabolomics, and Expression (GIMMME) algorithm 

converts reversible reactions into two irreversible reactions, and further incorporates integer (binary) 

variables to ensure only one direction is used. “Virtual” metabolites are then added: e.g. each reaction that 

produces or consumes a real metabolite produces a virtual metabolite. A “virtual” metabolite reaction sink 

is then added, which makes it possible to precisely model the rate of production and consumption 

(turnover) of each model metabolite. Additionally, to ensure detected metabolites are produced and 

consumed by the metabolic network, it is possible to impose a requirement for a minimum reaction flux 

on the “virtual” metabolite reaction sink. By applying this constraint, we identified two experimentally 

detected metabolites that were present but could not be both produced and consumed (e.g. these 

metabolites were blocked) in each growth condition. 

We then characterized the tradeoff between fully optimal growth and ensuring that the 

experimentally-detected metabolites were produced and consumed. Most, but not all, of the 57 

metabolites in each condition that mapped to the model were accessible when growth was constrained to 

100% of optimal. Each of the 57 could sustain flux (accessible) with relaxation of the growth constraints 

to 99% of optimal (Supplemental Methods Figure SMF1A).  The tradeoff between growth and requiring 

metabolite production and consumption (turnover) was further verified. By requiring turnover at 1.01 

times the numerical tolerance (1.01 × 10
-8

) through all experimentally detected metabolites, reductions in 

maximal growth were smaller than the numerical tolerance (Supplemental Methods Figure SMF1B, LB 

Exp and LPM Exp.). Additionally, growth could still be achieved at greater than 99% of the optimal rate. 

By requiring turnover through all accessible metabolites, reductions in maximal growth in LPM were 

larger than the numerical tolerance (Supplemental Methods Figure SMF1B, LPM Acc.). 

We then added “soft” penalties to the model reactions based on the transcriptomics measurements. 

Quantile-normalized intensities were taken from the two-color microarrays. Gene-reaction relations in the 

model were used to assign effective array intensities to the corresponding reactions. Flux through 

reactions incurred a penalty proportional to the difference in the normalized log2 intensity from the model 

locus with the highest intensity on the array. Since growth was constrained to 99% of optimal, the penalty 

was constrained to within 1% of the minimal achievable at the optimal growth rate. Therefore, fully 

condition-specific models comparing LB to LPM 4 h constrained growth to 99% of optimal, required flux 

through the experimentally-detected metabolites, and additionally constrained the transcriptome-derived 

penalty to within 1% of the minimal. 
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We characterized the accessibility and essentiality of network reactions, cellular metabolites, and 

genes when either a requirement for non-zero growth or requirements for the more stringent conditions of 

near optimal growth, utilization of experimentally-detected metabolites, and near-minimal penalty were 

implemented (Supplemental Methods Table SMT2). The essentiality and accessibility of model reactions 

were also assessed for growth in LB and LPM media.  A reaction was deemed essential if growth was no 

longer possible (i.e. zero growth or an “infeasible” solution) when the flux through the reaction was 

constrained to zero. As described previously, reactions were deemed to be accessible if their maximum 

flux, as assessed by flux balance analysis, was greater than the numerical tolerance for a given growth 

condition.  Expanding the definition of essentiality to the growth- and omics-constrained models, a 

reaction was defined to be essential if it was no longer possible to meet the increased growth constraint as 

well as the metabolomics and transcriptomics data-derived constraints when fixing the reaction flux to 

zero. Gene and metabolite essentiality, as well as metabolite accessibility, were similarly assessed. 

For comparison, the percentage of essential periplasmic and cytosolic metabolites surpassed the 

percentage of essential reactions in S. Typhimurium (e.g. 24.2% vs. 11.5% in LB, 28.7% vs. 15.1% in 

LPM, Supplemental Methods Table SMT2), consistent with a previous analysis of E. coli metabolism that 

employed flux-sum analysis.
5
  In a previous investigation of essential metabolites for several bacteria 

cultured in silico with rich medium,
6
 the intracellular pathogen Mycobacterium tuberculosis exhibited the 

largest number of essential metabolites, 358 (43%), compared with E. coli (128, 20%), Staphylococcus 

aureus (201, 35%), and Helicobacter pylori (139, 29%).  Our result for S. Typhimurium (325 or 29% 

biochemically unique metabolites for minimal growth in LB medium) does raise the question as to 

whether metabolite essentiality may correlate with the degree to which a bacterium exhibits the capacity 

for a pathogenic lifestyle and its chosen environment. The metabolomics-driven systems biology 

approach employed herein may assist in the identification of new therapeutic targets. However, without a 

direct comparison to the host,
6, 7

 it is not clear that increased essentiality enhances the availability of 

suitable drug targets.  An integrated host-pathogen network that also monitors the capacity for 

macrophage activation may identify additional drug targets against intracellular pathogens by modulating 

host activation or the capacity of the host to supply essential microbial nutrients to the appropriate cellular 

compartment 

Supplemental Methods Figure SMF1. Numerical consistency check for imposition of “virtual” 

metabolite constraints. A) S. Typhimurium could utilize each of the 57 unblocked, experimentally detected 

metabolites represented in the model with growth constrained to 99% and 99.9% of the optimal rate, but not 

with growth constrained to 100% of the optimal rate. B) Imposition of flux constraints on all accessible 

metabolites resulted in a small relative reduction in the maximal achievable growth of less than 10
-6

.  Growth 

rate (biomass production) differences from the unconstrained model are shown. Constraints were imposed to 

ensure flux through LB experimentally detected metabolites (LB Exp.), all LB accessible metabolites (LB 

Acc.), LPM experimentally detected metabolites (LPM Exp.), and all LPM accessible metabolites (LPM 

Acc.).  
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Supplemental Methods Table SMT1:  Reaction, gene, and metabolite accessibility and essentiality 

  Model LB (growth) 

LB (near 

optimal growth 

+ omics) 

LPM 

(growth) 

LPM (near 

optimal growth 

+ omics) 

Network Reactions (essential) 2201 253 11.5% 386 17.5% 332 15.1% 391 17.8% 

Network Reactions (accessible) 2201 1517 68.9% 1517 68.9% 1483 67.4% 1483 67.4% 

Genes (essential) 1270 144 11.3% 230 18.1% 198 15.6% 260 20.5% 

Cellular Metabolites, 

compartmentalized (essential) 1461 353 24.2% 456 31.2% 420 28.7% 472 32.3% 

Cellular Metabolites, 

compartmentalized (accessible) 1461 985 67.4% 985 67.4% 971 66.5% 971 66.5% 

Cellular Metabolites, 

biochemically unique (essential) 1114 325 29.2% 392 35.2% 390 35.0% 434 39.0% 

Cellular Metabolites, 

biochemically unique (accessible) 1114 779 69.9% 779 69.9% 777 69.7% 777 69.7% 
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