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Delay-Managed tradeoff in molecular dynamics of segmentation clock
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1 Introduction

This supporting information contains three sections with details on the mathematical
model for the pace-making circuit of segmentation clock, parameter value/range selection,
numerical methods. In the section on the mathematical model, we provide details about
modeling the dynamics of Hes7 mRNA and protein. In the section on parameter selection,
we describe how we In the section on numerical methods, we give details on the

2 Mathematical models of pace-making circuit

2.1 Deterministic Models

We derive here the mathematical models used in the main text. Using the standard
chemical kinetics and the assumption for the existence of two types of reactions: fast and
slow, we introduce the following chemical species: P , repressor monomer, P2, repressor
dimer, D0, repressor promoter region, and D1, D2, D3, the state of the three binding sites
with the respective bound proteins. The system size is taken into account by introducing
a parameter Ω (including cell volume and Avogadro’s number).
Scenario I
Fast equilibrium reactions. We assume that DNA-binding reactions and dimerization
are fast.

D0 + P2
k+1−→←−−
k−1

D1

D1 + P2
k+2−→←−−
k−2

D2D1

D2D1 + P2
k+3−→←−−
k−3

D3D2D1

P + P
k+4−→←−−
k−4

P2

(1)

Slow reactions.Transcription, translation and degradation of the repressor are consid-
ered as slow reactions.
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D0
αb−→ D0 +M

D1
αr−→ D1 +M

D2D1
αr−→ D2D1 +M

D3D2D1
αr−→ D3D2D1 +M

M
αp−→M + P

M
γm−→ ∅

P
γp−→ ∅

(2)

P2
σγp−→ ∅ (3)

Fast reactions are assumed to be in equilibrium. We can thus introduce the cor-
responding dissociation constants for DNA-binding (K1 = [D0] [P2] / [D1] = k−1/k+1,
K2 = [D1] [P2] / [D2D1] = k−2/k+2, K3 = [D2D1] [P2] / [D3D2D1] = k−3/k+3 ) and dimer-
ization ( K4 = [P ]2 / [P2]

2 = k−4/k+4 ). Defining concentrations as our dynamical vari-
ables, m = [M ] , p = [P ] , p2 = [P2] , d0 = [D0] , d1 = [D1] , d2 = [D2D1] , and
d3 = [D3D2D1], we can write a 2-dimensional deterministic model as

d [M ]

dt
= αb [D0] + αr [D1] + αr [D2D1] + αr [D3D2D1]− γm [M ]

d [P ]

dt
= αp [M ]− γp [P ]− 2σγp [P2]

(4)

Consider that the total concentration of promoter sites dt is a constant (dt = [D0] +
[D1] + [D2D1] + [D3D2D1]), take the fast reactions to be in equilibrium, and making used
of the above reactions and assumptions. We next simplify these equations by introducing
dimensionless time and concentrations as follows:

∼
t = γmt

∼
m =

αp [M ]

γp
∼
p = [P ]

(5)

The time is then measured in unites of mRNA decay. Upon substitution into Eq. (4),
the previous 2-dimensional model becomes

dm

dt
= α0 +

α

1 + (p/P0)
2 + r2 (p/P0)

4 + r2r3 (p/P0)
6 −m

dp

dt
= βm− βp− 2r1βp

2

(6)
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with the definitions

α0 =
αrαpdT
γmγp

,α =
(αb − αr)αpdT

γmγp

β =
γp
γm

,r1 =
σ

K4

r2 =
K1

K2

,r3 =
K1

K3

P0 =
√

K1K4

(7)

Here we have suppressed the overbar on
∼
t ,
∼
m, and

∼
p. It can be proved from Bendixson’s

Negative Criterion, however, that it is impossible for this pair of differential equations to
generate sustained oscillations. This conclusion holds for any form of the function f (p),
provided only that β is positive number.
Deterministic model I with delay

The requirement of the somewhat mysterious third state variable z for sustained os-
cillations in the ODE model studied by Hirata et al. leads to the introduction of delay
differential equation (DDE) models of the cellular oscillator. These models introduced
biologically realistic transcription, translation, and transport delays into the production
terms of protein and mRNA, which allowed sustained oscillations in a dynamical system
with only two dependent variables and a reduced number of model parameters. Models
with negative feedback and time delay have arguably become the most prominent ones
of oscillatory gene expression in somitogenesis. We introduce a delayed model to track
both mRNA and protein levels of a single clock gene. In this model, the clock protein is
assumed to form a homodimer that represses its mRNA production after a delay. Three
main sources of delay are the transcription and post-transcriptional processing of mRNA,
the translation delay in protein production, and the transport of molecules between the
nuclear and cytosolic compartments within a cell or between the cytosolic compartments
of adjacent cells. This system is capable of autonomous, generating sustained oscillations
of gene expression. The relative amounts of clock protein monomers, homodimers with
the control protein are explicitly tracked, allowing different decay rates for each.

Absorbing all the delays (including transcription and translation) into one delay, τ ,
the model with delay is represented by the following DDE:

dm

dt
= α0 +

α

1 + (p (t− τ) /P0)
2 + r2 (p (t− τ) /P0)

4 + r2r3 (p (t− τ) /P0)
6 −m (t)

dp

dt
= βm (t)− βp (t)− 2r1βp (t)

2

(8)

Scenario II
Since clock protein is degraded by the ubiquitin-proteasome pathway, we include

Michaelis-Menten kinetics for the ubiquitination of protein.
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We proceed similarly as in scenario I. The only difference lies in the protein decay
mechanism. In this case, the enzyme E binds to clock protein and favors catalyzed
protein decay. The degradation of clock protein is caused by ubiquitination. If we pool
the three enzymatic steps into one enzymatic reaction, ubiquitination can be displayed
by the following reaction scheme:
fast equilibrium reactions:

E + P
k+5−−→←−
k−5

EP

E + P2

k+6−−→←−
k−6

EP2

(9)

slow reactions:

EP
δ1γp−→ E

EP2
δ2γp−→ E

(10)

We formulate a model by using a rate equation approach, which neglects fluctuations
and use concentrations as our dynamical variables. Taking the fast reactions to be in
equilibrium, we eliminate some variables and obtain: [P2] = [P ]2 /K4, [PE] = [P ] [E] /K5,
and [P2E] = [P2] [E] /K6.

The rate equations for the concentration of protein and mRNA are given by

d [M ]

dt
= αb [D0] + αr [D1] + αr [D2D1] + αr [D3D2D1]− γm [M ]

d [P ]

dt
= αp [M ]− γp [P ]− δ1γp [PE]− 2δ2γp [P2E]

(11)

We eliminate the fast variables, and use the fact that the total number of DNA-binding
sites is conserved (dt = [D0] + [D1] + [D2D1] + [D3D2D1]). Assume that the total amount
of enzyme E is constant (Etot = [E] + [PE] + [P2E]), and nondimensionalized by setting

t = γmt,m = αp[M ]

γpK4
and p = [P ]. The dimensionless equation is then

dm

dt
= α0 +

α

1 + (p/P0)
2 + r2 (p/P0)

4 + r2r3 (p/P0)
6 −m

dp

dt
= βm− βp− βµ

(
1− 1

1 + p/K + r4 (p/K)2

) (12)

where
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µ = δ1Etot

K = K5

r4 =
K2

5

K4K6

δ1 = 2δ2

(13)

Deterministic model II with delay
Absorbing all the delays (including transcription and translation) into one delay, τ ,

the model with delay is represented by the following DDE:

dm

dt
= α0 +

α

1 + (p (t− τ) /P0)
2 + r2 (p (t− τ) /P0)

4 + r2r3 (p (t− τ) /P0)
6 −m (t)

dp

dt
= βm (t)− βp (t)− βµ

(
1− 1

1 + p (t) /K + r4 (p (t) /K)2

) (14)

3 Methods

3.1 Steady states and local stability

The local stability can be characterized by jacobian matrix of mathematical model equa-
tions. We present local stability analysis for model I, and local stability analysis for model
II can be performed in a similar way.

The steady states E∗ = (p∗,m∗) are given by solving

α0 + f (p)−m = 0

m− p− 2r1p
2

(15)

where

f (p) =
α

1 + (p/P0)
2 + r2 (p/P0)

4 + r2r3 (p/P0)
6 (16)

and p∗ satisfies f (p) − p − 2r1p
2 + α0 = 0, which clearly has a unique positive solution.

The characteristic equation of the linearized equation of (6) around E∗ is given by

(
−1 f

′
(p∗)

β −β (1 + 4r1p
∗)

)
(λ+ 1) (λ+ β (1 + 4r1p

∗))− βf
′
(p∗) = 0

(17)
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which clearly has eigenvalues with negative real parts. Thus, E∗ is asymptotically stable.
In other words, without delays, the model will not generate sustained oscillations.
Deterministic model with delay

The characteristic (eigenvalue) equation associated with this system of equations de-
pends on the delay τ ,

(λ+ 1) (λ+ β (1 + 4r1p
∗))− βf

′

τ (p
∗) e−λτ = 0 (18)

There is a critical value for the delay τ , denoted by τcrit, at which the system is destabilized
and undergoes a Hopf bifurcation. At the Hopf bifurcation point, a pair of eigenvalues λ
has a zero real part, i.e., λ = ±iω. The value ω gives the frequency of oscillation at the
Hopf bifurcation point.

Assuming that s = 1 + 4r1p
∗, c = f

′
τ (p

∗), and λ = u+ iω, we have

u2 − ω2 + (1 + βs)u+ βs− βce−uτ cos (ωτ) = 0

2uω + (1 + βs)ω + βce−uτ sin (ωτ) = 0
(19)

When u = 0, ω ̸= 0,

− ω2 + βs− βc cos (ωτ) = 0

(1 + βs)ω + βc sin (ωτ) = 0
(20)

Using the fact that sin2 (ωτ) + cos2 (ωτ) = 1, we get

ω4 +
(
1 + β2s2

)
ω2 + β2s2 − β2c2 = 0

ω2 =
1

2

(
−
(
1 + β2s2

)
+

√
(1− β2s2)2 + 4β2c2

)
(21)

Unstable behavior, if present, should exist only for finite values of the delay. If a stabile
domain exists, then at its borders we have Reλ = 0 (generically Reλ crosses zero and
changes sign). Placing ourselves at this very border we assume that λ = iω with real ω.
Substituting the value of λ into (18), we obtain an eigenvalue equation and separate it
into real and imaginary parts. We solve these two equations for cosωτ and sinωτ and
implement the relation cos2 ωτ + sin2 ωτ = 1. The latter factorises into polynomials in
ω2. It turns out that the polynomial in ω2 always has one real positive root provided
that s2 < c2. Thus, one can satisfy the compatibility between the two equations resulting
from (18). Substituting this root back into the equation for, say, cosωτ , one obtains a
constraint to the parameters of the equation for the existence of the instability. We can
numerically solve this constraint equation by using the function fzero of Matlab.
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3.2 Analytical power spectra of cellular oscillator

Let us first analyze briefly the dynamics of the macroscopic system. Defining M (t) and
P (t) as the concentration of mRNA and clock protein, respectively, the model presented
in our work is then represented by the following ODE:

dm (t)

dt
= α0 + f (p (t))−m (t)

dp (t)

dt
= βm (t)− βg (p)

(22)

where

f (p) =
α

1 + (p/P0)
2 + r2 (p/P0)

4 + r2r3 (p/P0)
6 (23)

and for Model I

g (p) = p+ 2r1p
2 (24)

for Model II

g (p) = p+ µ

(
1− 1

1 + p/K + r4 (p/K)2

)
(25)

Its equilibria are obtained by solving the system

m = α0 + f (p)

m = g (p)
(26)

and their stability is studied by means of a linear stability analysis. For the linear form
of model equations

dm

dt
= a11m+ a12p

dp

dt
= a21m+ a22p

(27)

with a11 = −1, a12 = f
′
(p∗) , a21 = β, a22 = −βg′

(p∗) in which p∗ is the solution of
(26). The stochastic dynamics are fully described by a multivariated master equation.
A formal large Ω expansion of this equation gives rise to the Fokker-Planck equation.
To look for oscillations in the fluctuation case, it is easier to work with the equivalent
Langevin equations:
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dξm
dt

= a11ξm + a12ξp + κm

dξp
dt

= a21ξm + a22ξp + κp

(28)

These are a pair of differential equations which describe the stochastic behavior of the
model at a large but finite Ω. The variables ξm and ξp are stochastic corrections to the
deterministic system with the relation

M (t) = Ωm (t) + Ω1/2ξm

P (t) = Ωp (t) + Ω1/2ξp
(29)

And, the κm, κp are Gaussian white noises with zero mean and a correlation function de-
fined in terms of a noise covariance matrixDm,Dp satisfying

⟨
κm (t)κm

(
t
′)⟩

= Dmδ
(
t− t

′)
,⟨

κp (t)κp

(
t
′)⟩

= Dpδ
(
t− t

′)
, and

⟨
κm (t)κp

(
t
′)⟩

= Dmpδ
(
t− t

′)
. The noise intensities

are given by:

Dm = α0 + f (p) +m

Dp = βm+ βg (p)

Dmp = Dpm = 0

(30)

The constants aij are exactly the same as coefficients found from linear stability analysis
about the non-trivial fixed point of Eq. (26). The matrix Dij, which is responsible for
generating the large-scale oscillations, can not be determined from Eq. (22) and is derived
from the master equation using the Van Kampen expansion.

Since we are interested in cycles, it is natural to work in terms of ξ̃m (ω) and ξ̃p (ω)
which are the Fourier transforms of ξm and ξp, respectively. Furthermore, taking the
Fourier transform of the equations (28) allows us to solve for these variables very simply.
We can now calculate the power spectra of the fluctuations about the mean-field values
for the cellular oscillator to be

Sm (ω) =

⟨∣∣∣ξ̃m (ω)
∣∣∣2⟩ =

Fm +Dmω
2

(∆− ω2)2 + ω2T 2

Sp (ω) =

⟨∣∣∣ξ̃p (ω)∣∣∣2⟩ =
Fp +Dpω

2

(∆− ω2)2 + ω2T 2

(31)

Where ∆ = a11a22 − a12a21, T = a11 + a22, the constants Fm and Fp are defined as
Fm = Dma

2
22 − 2Dmpa12a22 +Dpa

2
12, Fp = Dpa

2
11 − 2Dmpa21a11 +Dma

2
21, respectively.
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3.3 Analytical power spectra with delay

In the fixed-point regime of the mean-field dynamics, the delay Langevin equations read

dξm
dt

= a11ξm (t) + a12ξp (t− τ) + κm (t)

dξp
dt

= a21ξm (t) + a22ξp (t) + κp (t)

(32)

with a11 = −1, a12 = f
′
(p∗) , a21 = β, a22 = −βg′

(p∗) and p∗ is the fixed point. The
variables ξm and ξp are stochastic corrections to the deterministic system with the relation

M (t) = Ωm (t) + Ω1/2ξm

P (t) = Ωp (t) + Ω1/2ξp
(33)

And, the κm, κp are Gaussian white noises with zero mean and a correlation function that
is defined in terms of noise covariance matrix Dm, Dp satisfying

⟨
κm (t)κm

(
t
′
)⟩

= [α0 + f (p∗) +m∗] δ
(
t− t

′
)

⟨
κp (t)κp

(
t
′
)⟩

= [βm∗ + βg (p∗)] δ
(
t− t

′
)

⟨
κm (t)κp

(
t
′
)⟩

= 0

(34)

Inverting in Fourier space one then finds after some algebraic manipulations

Sm (ω) =

⟨∣∣∣ξ̃m (ω)
∣∣∣2⟩

=
[D11a

2
22 − 2D12a12 (a22 cos (ωτ) + ω sin (ωτ)) +D22a

2
12 +D11ω

2]

(a11a22 − a12a21 cos (ωτ)− ω2)2 + (a12a21 sin (ωτ)− ωT )2

Sp (ω) =

⟨∣∣∣ξ̃p (ω)∣∣∣2⟩
=

[D22a
2
11 − 2D21a21a11 +D11a

2
21 +D22ω

2]

(a11a22 − a12a21 cos (ωτ)− ω2)2 + (a12a21 sin (ωτ)− ωT )2

(35)

with D11 = α0 + f (p∗) +m∗, D22 = βm∗ + βg (p∗) p∗, D12 = D21 = 0.
Quality of noise-induced oscillations:
The quality factor, Q, is a dimensionless parameter, which characterizes an oscillator’s

bandwidth relative to its peak frequency,

Q =
ωp

∆ω
(36)
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where ωp is the peak frequency and ∆ω is the bandwidth. A high Q corresponds to
oscillations of better regularity. We calculate the Q for the diagonal entries of the PSD
matrix. The bandwidth ωp satisfies ∆ω = |ω1 − ω2| , S (ω1) = S (ω2) = [S (ωp)− S (0)] /2.

3.4 Noise evaluation in the phase angular

Let M (t) and P (t) represent the number of mRNA and clock protein and (Meq, andPeq)
be the steady state. We have

r =

√
(M (t)−Meq)

2 + (P (t)− Peq)
2

ϕ (t) = atan (P (t)− Peq,M (t)−Meq)
(37)

where ϕ (t) is the phase angle of oscillator. We define φ as the prephase satisfying φ =
mod (ϕ, 2π). Then we have

σr (φ) =
√⟨

(r − ⟨r⟩)2
⟩
(φ)

σm (φ) = σr (φ) |cosφ|
σp (φ) = σr (φ) |sinφ|

(38)

ηr (φ) =
σr

⟨r⟩
(φ)

ηm (φ) =
σr |cosφ|
⟨M⟩

ηp (φ) =
σr |sinφ|
⟨P ⟩

(39)

The Delayed Gillespie Direct Method.
(1) Initialize. Set model parameters and the system size Ω. Input values for initial

state X = (X1, · · · , XN) , set time t = 0 and list of scheduled delay reaction to an empty
list.

(2) Compute propensities of M reactions aµ, µ = 1, · · · ,M .

(3) Compute a0 (X (t)) =
∑M

j=1 aj (X (t)).

(4) Generate uniform random numbers u1, u2 ∈ [0, 1].
(5) Compute time to next reaction, ∆t = 1

a0(X(t))
ln (1/u1) .

(6) Check whether there are delayed reactions scheduled within time interval [t, t+∆t].
if delayed reactions are scheduled within (t, t+∆t], then time t advances to the time

td, and X states are updated according to the delayed reaction channel k.

X (td) = X (t) + νk

t = td
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elseif there is no delayed reaction scheduled for the interval (t, t +∆t], then find the
channel of the next reaction j such that

j−1∑
µ=1

aµ (X (t)) < u2a0 (X (t)) ≤
j∑

µ=1

aµ (X (t))

(7) If the selected reaction j is not delayed, updateX according to the reaction channel
j, X (t+∆t) = X (t) + νj.

else
record time, td = t+∆t+ τ , for delayed reaction j.
(8) Update time t = t+∆t and go to step (2).
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