

5'-O-dimethoxytrityl-N⁴-acetyl-2'-deoxycytidine 3'-(2-[2-(2trifluoroacetamidoethoxy)ethoxy]ethyl-N,N-diisopropyl)phosphoramidite

5'-O-dimethoxytrityl-N⁶-phenoxyacetyl-2'-deoxyadenosine 3'-(2-[2-(2-

trifluoroacetamidoethoxy)ethoxy]ethyl-N,N-diisopropyl)phosphoramidite

 $\label{eq:2-2-2-2} 5'-O-dimethoxytritylthymidine \ 3'-(2-[2-(2-trifluoroacetamidoethoxy)-ethoxy]ethyl-N,N-diisopropyl)phosphoramidite$

Figure S1. Phosphoramidite synthons used for introduction of internucleoside amino linkers into ODNs.

Table S1. Cyanine-linked ODN duplexes with contact mode of quenching.

N	Duplex ¹⁾	b.p. distance, nucleotides	Absorbanc e spectra changes ²⁾	Cy5.5 donor fluorescence intensity decrease, % ³⁾	Acceptor fluorescence intensity change, % ⁴⁾
1	5 'CGTA TG <mark>⊗</mark> AGTGACTG-CAG AGCT 3 '	8	$\sqrt{\sqrt{1}}$	92.6	-81.3
	3 ' gcat ac-tcactgac <mark>⊗</mark> gtc tcga 5 '	G,G			
2	5 ′ agcc tg <mark>⊗</mark> gaaagtc-ccac atcg 3′	7	$\sqrt{\sqrt{1}}$	93.5	-86.7
	3 ' tcgg ac-ctttcag <mark>⊗</mark> ggtg tagc 5 '	G,G			
3	5 ′ agcc tg <mark>⊗</mark> gaaagtcc-cac atcg 3′	8	$\sqrt{\sqrt{1}}$	86.4	-71.1
	3 ′ TCGG AC-CTTTCAGG <mark>8</mark> GTG TAGC 5 ′	G,G			
4	5 ′ agcc tggaaa <mark>⊗</mark> gtcccac a-tcg 3′	8	$\sqrt{\sqrt{1}}$	90.6	-20.8
	3 ′ TCGG ACCTTT−CAGGGTGT <mark>⊗</mark> AGC5′	A,A			
5	5' agcc t <mark>⊗</mark> ggaaagtc-ccac atcg 3'	8	$\sqrt{\sqrt{1}}$	94.9	-42.7
	3 ' tcgg a-cctttcag <mark>⊗</mark> ggtg tagc 5 '	Τ , G			
6	5 ' agcc tg <mark>⊗</mark> gaatttcc-cac atcg 3'	8	$\sqrt{}$	93.8	-58.8
	3 ′ TCGG AC−CTTAAAGG <mark>⊗</mark> GTG TAGC 5 ′	G,G			
7	5' agcc at <mark>⊗</mark> ttcccgta-aat ctcg 3'	8	$\sqrt{\sqrt{1}}$	86.1	-63.9
	3 ′ TCGG TA−AAGGGCAT <mark>⊗</mark> TTA GAGC 5 ′	т,т			
8	5 ' agcc tggaaag <mark>⊗</mark> tcccac at-cg 3 '	8	$\sqrt{\sqrt{1}}$	89.8	17.8
	3 ' TCGG ACCTTTC−AGGGTGTA <mark>⊗</mark> GC5 '	G,G			

1) \otimes OCH₂CH₂OCH₂CH₂OCH₂CH₂NH-CW800, \otimes OCH₂CH₂OCH₂CH₂OCH₂CH₂NH-Cy5.5

2) $\sqrt{1}$: new peak at 645 nm, with the concomitant decrease of absorbance at 675 nm.

3) Fluorescence intensity change at 700nm (excited at 675nm),

4) Fluorescence intensity change at 800 nm (excited at 675 nm).

N	Duplex ¹⁾	b.p. distance, nucleotid es	Absorbance spectra changes	Cy5.5 donor fluorescence intensity decrease, % ²⁾	Acceptor fluorescence intensity change, % ³⁾
9	5' AGCCTG-GAATTTCC <mark></mark> CACATCG3'	8	_	59.4	115.8
	3′ TCGG AC <mark>⊗</mark> CTTAAAGG-GTG TAGC 5′	C,C			
10	5' AGCC TGGAAT-TTCCCACA <mark>⊗</mark> TCG3'	8	-	80.5	65.2
	3′ tcgg acctta <mark>⊗</mark> aagggtg t-agc 5′	A,A			
11	5' AGCCTGGAA-TTTCCCACA <mark>⊗</mark> TCG3'	9	_	78.5	70.7
	3′ TCGG ACCTT <mark>⊗</mark> AAAGGGTG T-AGC 5′	A,A			
12	5' AGCCTG-GAAAGTC <mark></mark> CCACATCG3'	7	-	73.2	118.1
	3' TCGG AC <mark>⊗</mark> CTTTCAG-GGTG TAGC 5'	C,C			
13	5' AGCCTG-GAAAGTCC <mark></mark> CACATCG3'	8	-	71.5	125.0
	3′ TCGG AC <mark>⊗</mark> CTTTCAGG-GTG TAGC 5′	C,C			
14	5' AGC-CTGGAAAG <mark></mark> CCCCACATCG3'	8	-	67.7	127.4
	3' TCG<mark>⊗</mark>GACCTTTC-AGGGTGTAGC5'	G,G			
15	5' AGCCT <mark></mark> GGAAAGTCCC-ACATCG3'	10	-	69.2	93.9
	3' TCGG A-CCTTTCAGGG <mark>⊗</mark> TG TAGC 5'	Τ,Τ			
16	5' AGCCT <mark></mark> GGAAAGTCCC-ACATCG3'	10	-	70.6	103.6
	3' TCGG A-CCTTTCAGGG <mark>&</mark> TG TAGC 5'	Т,Т			
17	5' AGCCTG <mark>&</mark> GAAAGTCCCACATCG 3'	0	-	86.3	95.9
	3' TCGG AC <mark></mark> CTTTCAGGGTG TAGC 5'	G,C			

Table S2. Cyanine-linked ODN duplexes exhibiting radiative FRET

1) \otimes OCH₂CH₂OCH₂CH₂OCH₂CH₂NH-CW800, \otimes OCH₂CH₂OCH₂CH₂OCH₂CH₂NH-Cy5.5

2) Fluorescence intensity change at 700nm (excited at 675nm) (%)

3) Fluorescence intensity change at 800 nm (excited at 675 nm).

Table S3. Both modes of guenching/energy transfer, intermediate change in visible absorbance spectrum.

N	Duplex ¹⁾	b.p. distance, nucleotid es	Absorbance spectra changes ²⁾	Cy5.5 donor fluorescence intensity decrease, % ³⁾	Acceptor fluorescence intensity change, % ⁴⁾
18	5' AGCCTG <mark>⊗</mark> GAAAGTCCC-ACATCG 3'	9	\checkmark	65.9	65.2
	3' TCGG AC-CTTTCAGGG <mark>⊗</mark> TG TAGC 5'	Τ , G			
19	5' AGCCTG <mark>8</mark> GAAAGTCCC-ACATCG 3'	9	\checkmark	73.2	65.2
	3' TCGG AC-CTTTCAGGG <mark>⊗</mark> TG TAGC 5'	Τ , G			
20	5' AGCCT <mark>&</mark> ggaAagtcc-cac atcg 3'	9	\checkmark	78.4	57.1
	3′ tcgg a-cctttcagg <mark>⊗</mark> gtg tagc 5′	Τ , G			
21	5' AGCC T <mark>&</mark> GGAAAGTCC-CAC ATCG 3'	9	\checkmark	81.4	63.4
	3' tcgg a-cctttcagg <mark>8</mark> gtg tagc 5'	Τ,G			
22	5' AGCC TGGAAAGTCC <mark>⊗</mark> CAC ATCG 3'	0	\checkmark	81.2	91.3
	3' tcgg acctttcagg <mark>⊗</mark> gtg tagc 5'	C,G			
23	5' AGCCTG <mark>8</mark> GAAAGTCCC-ACATCG 3'	8	\checkmark	81.7	0.9
	3' tcgg ac-ctttcagg <mark>⊗</mark> gtg tagc 5'	G, G			
24	5' CGTA TG <mark>8</mark> AGTGACTG-CAG AGCT 3'	8	\checkmark	86.7	22.6
	3' gcat ac-tcactgac <mark>8</mark> gtc tcga 5'	G, G			

1) \otimes OCH₂CH₂OCH₂CH₂OCH₂CH₂NH-CW800,

 \otimes OCH₂CH₂OCH₂CH₂OCH₂CH₂NH-Cy5.5

 \odot OCH₂CH₂OCH₂CH₂OCH₂CH₂NH-Cy7

2) $\sqrt{2}$: indicates a blue-shifted peak of Cy5.5 absorbance at 675 nm.

3) Fluorescence intensity change at 700nm (excited at 675nm) (%)

4) Fluorescence intensity change at 800 nm (excited at 675 nm).