Supplementary material:

Dynamical simulations of biofilm formation using SQUAD

To assign continuous activity values to each component, the detailed quorum sensing network assembled as detailed in the paper using cell designer 3.5.1. can now be used as input for the simulation environment SQUAD (DiCara et al., 2007). Using the machine readable file constructed by cell designer allows the software SQUAD to transform the static network into a continuous dynamical system based on ordinary differential equations. Only the topology and the connectivity (different inputs and outputs of one node) are available as information. The dynamics in the network is approximated accordingly, assuming exponential functions. Specifically, SQUAD Is using the equation

$$\frac{dx_i}{dt} = \frac{-e^{0.5h} + e^{-h(\omega_i)}}{(1 - e^{0.5h})(1 + e^{-h(\omega_i - 0.5)})} - g_i x_i$$

$$0 \le x_i \le 1,$$
(eq. 1)

which describes the change of activation of node x_i over time (DiCara et al., 2007). This transformation is thus achieved without any detailed information on the kinetics by simplifying generic and integrative assumptions: The original discrete step function is translated into a sigmoid response curve. Its magnitude depends on the following parameters: The function gain (h), weights (ω_i) and the decay (g_i) . In the absence of kinetic data, the SQUAD simulation sets default values, i.e. 10 and 1 as default values for gain and decay of the exponential terms. Weighting factors ω_i account for the three different conditions of input (a, b, c) to a network node x_i according to whether there is a combination of activatory and inhibitory input or only one type of these inputs present:

$$\omega_{i} = \begin{cases} \left(\frac{1-\sum \alpha_{n}}{\sum \alpha_{n}}\right) \left(\frac{\sum \alpha_{n} x_{n}^{a}}{1+\sum \alpha_{n} x_{n}^{a}}\right) \left(1-\left(\frac{1+\sum \beta_{m}}{\sum \beta_{m}}\right) \left(\frac{\sum \beta_{m} x_{m}^{i}}{1+\sum \beta_{m} x_{m}^{i}}\right)\right) & a \\ \left(\frac{1-\sum \alpha_{n}}{\sum \alpha_{n}}\right) \left(\frac{\sum \alpha_{n} x_{n}^{a}}{1+\sum \alpha_{n} x_{n}^{a}}\right) & b \\ \left(1-\left(\frac{1+\sum \beta_{m}}{\sum \beta_{m}}\right) \left(\frac{\sum \beta_{m} x_{m}^{i}}{1+\sum \beta_{m} x_{m}^{i}}\right)\right) & c \end{cases}$$

(eq.2)

In the formula given, $\{x_n^a\}$ is the set of activators of a node x_i , $\{x_n^i\}$ represents the set of inhibitors affecting x_i , respectively. Formula a is applied if x_i gets both activatory and stimulatory input of further nodes. This is the case for hub nodes such *SarA*, *rot*, *Agr* (see the network structure, Figure 1 of the paper). For only activatory input b is used (e.g. *AIP*, *AgrA-P*, *AgrC* from the network), c represents solely inhibitory input (e.g. *RsbW*, *SigB*). The interpolation between the on and the off state for any node in the system results in an exponential decaying or bell-like shapes for the activation curves of the signalling nodes. The different steepness and trajectory shapes mirror the resulting complex function of activation and inhibition in each network node (see DiCara et al., 2007 for further details).

Statistical Analysis of significance values of predictions for the gene expression analysis

Overall the comparison with the gene expression data and simulation shows good agreement between prediction and experiment, e.g. there is always experimental support for a predicted quorum sensing response under at least one experimental data set for that condition. Hence, the overall performance of the model is strong enough to actually make with confidence new predictions (see also results part 2, where then mutation experiments and their outcome agreed well with the model).

Moreover, one can notice on the basis of the two different *in silico* $biofilm^+$ vs. $biofim^-$ datasets and the different in vitro *sarA⁻*, *agrA⁻* and biofilm datasets, that small changes in the experimental conditions may add to the inconsistent behavior of some nodes. This is shown for scenario C (Biofilm⁺ vs Biofilm⁻), comparing two different simulation settings: Simulation 2 and its settings better model the network, simulation 1 alone is not so successful.

Hence as previously mentioned, with more knowledge about the actual scenario (e.g. growth conditions, nutrient availability, pH) regarding the experimental testing of a specific strain an even higher consistency with the simulation could be achieved, given that the simulation has the capability (see Methods section in paper) to incorporate the variables.

However, even testing the individual experiments and data sets and compare these results to the performance of the model simulations shows significant results. This is summarized in the following Table 1S. The *in silico* datasets for all the three different conditions $AgrA^+$ vs $AgrA^-$, $SarA^+$ vs $SarA^-$ and Biofilm⁺ vs Biofilm⁻ were compared to the *in vitro* dataset from the SAMMD database and further validated using Chi square test.

	χ-square value						
Experiment	sim1	sim2	sim3				
$Agr^+ vs Agr^-$	11.4734***	4.6274*	10.24**				
$SarA^+$ vs $SarA^-$	4.6274*	7.0877**	3.3206*				
	C1sim2	C2sim2	C3sim2				
Biofilm ⁺ vs Biofilm ⁻	7.4323**	4.9132*	8.4203**				

Table 1S. Chi-square value for *in vitro* data compared to the *in silico* predictions in three different conditions looking at individual experiments.

Significance*= $P \le 0.05$, Significance**= $P \le 0.01$, Significance ***= $P \le 0.001$

Interactions between nodes	Source references
acetic acid -> cidR	Yang et al. 2005
Agr -> RNAIII	Novick, 2003
Agr -> RNAII	Novick, 2003
Agr -> SaeRS	Novick. 2003
Agr -> sak	Jin et al. 2004
Agr –I SarT	Schmidt et al. 2001
AgrA-P -> agr	Novick, 2003
AgrB -> AIP	Novick, 2003
AgrC -> AgrA-P	Novick, 2003
AgrD -> AIP	Novick, 2003
AIP -> AgrC	Novick, 2003
ArlR-P -> SarA	Fournier, 2001
ArlR-P – I agr	Fournier, 2001
ArlR-P – I norA	Fournier et al. 2000
ArlR-P – I sspB	Fournier, 2001
ArlR-P – I sspA	Fournier, 2001
ArlR-P – I SplA-F	Fournier, 2001
ArlR-P – I hla	Fournier, 2001
ArlR-P – I hlb	Fournier, 2001
arlRS -> ArlS	Fournier, 2001
arlRS -> ArlR	Fournier, 2001
ArlS -> ArlR-P	Fournier, 2001
Aur -> sspA	Nickerson et al. 2007
Aur -> biofilm	Boles and Horswill, 2008
Bap -> biofilm	Trotonda et al. 2005
branched-chain amino	Majerczyk et al. 2008
Come > eidAPC	Saidl at al. 2008
Cepa -> cluABC	Seidl et al. 2008
cidABC -> murain	Seldi et al. 2008
hydrolase	Yang et al. 2005
cidABC -> biofilm	Rice et al. 2007
cidR -> cidABC	Yang et al. 2005
clfA -> biofilm	Bartlett and Hulten, 2010
clfB -> biofilm	Bartlett and Hulten, 2010
ClpXP -> SarS	Cheung et al. 2008
Coa -> biofilm	Palma et al. 1999
Cody -> icaADBC	Majerczyk et al. 2008
Cody -> hla	Majerczyk et al. 2008
Cody -> agr	Majerczyk et al. 2008
cvfA -> SarZ	Nagata et al. 2008
cvfA -> agr	Nagata et al. 2008
cvfB -> agr	Nagata et al. 2008
cvfB -> spa	Nagata et al. 2008
DNAse – I biofilm	Huseby et al. 2010
Eap -> biofilm	Johnson et al. 2008
Emp -> biofilm	Johnson et al. 2008
fnbA -> biofilm	Boles and Horswill, 2008
fnbB -> biofilm	Boles and Horswill, 2008
Glucose -> acetic acid	Yang et al. 2005
GTP -> cody	Majerczyk et al. 2008
hla -> biofilm	Caiazza and O'Toole, 2003
hlb -> biofilm	Huseby et al. 2010
hld – I biofilm	Vuong et al. 2000
icaADBC -> PIA	Boles and Horswill, 2008

icaADBC -> empJohnson et al. 2008icaADBC -> eapJohnson et al. 2008icaA -I icaADBCCue et al. 2009lrgAB -I cidABCYang et al. 2005lytSR -> lrgABBronner et al. 2004MgrA -> SarXBallal et al. 2009MgrA -> agrBallal et al. 2009MgrA -> lrgABIngavale et al. 2003MgrA -I lytMIngavale et al. 2003MgrA -I lytNIngavale et al. 2006MgrA -I norBTruong-Bolduc et al. 2006MgrA -I norBTruong-Bolduc et al. 2006MgrA -I norBTruong-Bolduc et al. 2006msrR -I SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbi -i caRCue et al. 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> halbBronner et al. 2004RNA III -> halbBronner et al. 2004RNA III -> halpHovrick, 2003RNA III -> halpPournier, 2001RNA III -> halpFournier, 2001RNA III -> halpBronner et al. 2004RNA III		
icaADBC -> eapJohnson et al. 2008icaR -l icaADBCCue et al. 2009lrgAB -l cidABCYang et al. 2005lytSR -> lrgABBronner et al. 2004MgrA -> SarXBallal et al. 2009MgrA -> SarZBallal et al. 2009MgrA -> lrgABIngavale et al. 2003MgrA -> lrgABIngavale et al. 2003MgrA -> lrgABIngavale et al. 2003MgrA -> arlRSIngavale et al. 2003MgrA lytMIngavale et al. 2003MgrA lorCTruong-Bolduc et al. 2006MgrA lorCTruong-Bolduc et al. 2006MgrA lorCTruong-Bolduc et al. 2006MgrA lorCTruong-Bolduc et al. 2006MgrA lorCTruong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msr l SarARossi et al. 2003norG norBTruong-Bolduc and Hooper, 2007norG abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf licaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003R	icaADBC -> emp	Johnson et al. 2008
icaR - I icaADBCCue et al. 2009lrgABI cidABCYang et al. 2004lytSR -> IrgABBronner et al. 2004MgrA -> SarXBallal et al. 2009MgrA -> SarZBallal et al. 2009MgrA -> IrgABIngavale et al. 2003MgrA -> lytSRIngavale et al. 2003MgrA -> lytSRIngavale et al. 2003MgrA lytMIngavale et al. 2003MgrA lytMIngavale et al. 2003MgrA lorDTruong-Bolduc et al. 2006MgrA lorDTruong-Bolduc et al. 2006MgrA lorDTruong-Bolduc et al. 2006MgrA lorDTruong-Bolduc et al. 2006MgrA lorDTruong-Bolduc et al. 2006msrA l SarASambanthamoorthy et al. 2006msrR I SarARossi et al. 2003norG norBTruong-Bolduc and Hooper, 2007norG abcATruong-Bolduc and Hooper, 2007norG abcACue et al. 2009RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hldBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> karSCheung et al. 2003RNA III -> hlaBronner et al. 2004RNA III -> SaePNovick and Jiang, 2003RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 200	icaADBC -> eap	Johnson et al. 2008
IrgAB -l cidABCYang et al. 2005lytSR -> lrgABBronner et al. 2004MgrA -> SarXBallal et al. 2009MgrA -> SarZBallal et al. 2009MgrA -> lrgABIngavale et al. 2003MgrA -> lytSRIngavale et al. 2003MgrA -> lytSRIngavale et al. 2003MgrA -> arlRSIngavale et al. 2003MgrA lytNIngavale et al. 2003MgrA lytNIngavale et al. 2003MgrA lytNIngavale et al. 2006MgrA lorBTruong-Bolduc et al. 2006MgrA lorBTruong-Bolduc et al. 2006MgrA lorCTruong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msr -l SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG norBTruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -l icaRCue et al. 2003RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrDNovick, 2003RNA III -> AgrANovick and Jiang, 2003RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> loifilmBoles and Horswill, 2008Rot -l spASaïd-Salim et al. 2004RNA III -> hlaBronner et al. 20	icaR –l icaADBC	Cue et al. 2009
lytSR -> IrgABBronner et al. 2004MgrA -> SarXBallal et al. 2009MgrA -> SarZBallal et al. 2009MgrA -> IrgABIngavale et al. 2003MgrA -> lytSRIngavale et al. 2003MgrA -> lytSRIngavale et al. 2003MgrA -> lytMIngavale et al. 2003MgrA - lytMIngavale et al. 2003MgrA - lytMIngavale et al. 2003MgrA - lytNIngavale et al. 2006MgrA - norBTruong-Bolduc et al. 2006MgrA - norCTruong-Bolduc et al. 2006MsrA - ett38Truong-Bolduc et al. 2006msr - SarASambanthamoorthy et al. 2007norG -> norBTruong-Bolduc and Hooper, 2007norG - abcATruong-Bolduc and Hooper, 2007plA -> biofilmBoles and Horswill, 2008rbf - icaRCue et al. 2003RNA II -> AgrBNovick, 2003RNA II -> AgrBNovick, 2003RNA II -> AgrBNovick, 2003RNA II -> AgrBNovick, 2003RNA III -> AgrBNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlbBronner et al. 2004RNA III -> hlbBronner et al. 2004RNA III -> hlbBronner et al. 2003RNA III -> hlbBronner et al. 2004RNA III -> hlbBronner et al. 2004<	lrgAB –l cidABC	Yang et al. 2005
MgrA -> SarXBallal et al. 2009MgrA -> agrBallal et al. 2009MgrA -> IrgABIngavale et al. 2003MgrA -> lytSRIngavale et al. 2003MgrA -> lytSRIngavale et al. 2003MgrA lytMIngavale et al. 2003MgrA lytMIngavale et al. 2003MgrA lorDTruong-Bolduc et al. 2006MgrA lorDTruong-Bolduc et al. 2006MgrA lorDTruong-Bolduc et al. 2006MgrA lorDTruong-Bolduc et al. 2006MgrA lorDTruong-Bolduc et al. 2006msr lorARossi et al. 2003morG -> norBTruong-Bolduc and Hooper, 2007norG norBTruong-Bolduc and Hooper, 2007norG labcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbr licaRCue et al. 2003RNA II -> AgrBNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> logaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III logiBronner et a	lytSR -> lrgAB	Bronner et al. 2004
MgrA -> agrBallal et al. 2009MgrA -> SarZBallal et al. 2003MgrA -> IrgABIngavale et al. 2003MgrA -> arlRSIngavale et al. 2003MgrA -> arlRSIngavale et al. 2003MgrA -I lytMIngavale et al. 2003MgrA -I lytNIngavale et al. 2006MgrA -I orBTruong-Bolduc et al. 2006MgrA -I norCTruong-Bolduc et al. 2006MgrA -I norCTruong-Bolduc et al. 2006MgrA -I tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msrR -I SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG -1 abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -I icaRCue et al. 2003RNA II -> AgrBNovick, 2003RNA II -> AgrBNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> biofilmBoles and Horswill, 2008RNA III -> SaePNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlaFournier et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> saePNovick and Jiang, 2003Rot -I spASa	MgrA -> SarX	Ballal et al. 2009
MgrA -> SarZBallal et al. 2009MgrA -> IrgABIngavale et al. 2003MgrA -> arIRSIngavale et al. 2003MgrA IlytMIngavale et al. 2003MgrA IlytMIngavale et al. 2003MgrA IlytMIngavale et al. 2009MgrA I orBTruong-Bolduc et al. 2006MgrA I orBTruong-Bolduc et al. 2006MgrA I tet38Truong-Bolduc et al. 2006MgrA I tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msrRI SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG l abcA2007norG l abcA2007PIA -> biofilmBoles and Horswill, 2008rbf LicaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> AgrANovick and Jiang, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> hldBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaFournier et al. 2004RNA III -> saeBronner et al. 2004RNA III -> SarSCheung et al. 2003RNA III -> sagBronner et al. 2004RNA III SarSBallal et al. 2003 <td< td=""><td>MgrA -> agr</td><td>Ballal et al. 2009</td></td<>	MgrA -> agr	Ballal et al. 2009
MgrA -> lrgABIngavale et al. 2003MgrA -> arlRSIngavale et al. 2003MgrA -1 lytMIngavale et al. 2003MgrA -1 lytMIngavale et al. 2003MgrA -1 lytNIngavale et al. 2003MgrA -1 orBTruong-Bolduc et al. 2006MgrA -1 et38Truong-Bolduc et al. 2006MgrA -1 tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msr -1 SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG -1 abcATruong-Bolduc and Hooper, 2007norG -1 abcATruong-Bolduc and Hooper, 2007phf -1 icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick and Jiang, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2003Rot -> sdrCSaïd-Salim et al. 2003Rot -> sdrCSaïd-Salim et al. 2003Rot -> sdrCSaïd-Salim et al. 2003Rot -> spaBronner et al. 2004Rot - spASaïd-Salim et al. 2003Rot - spASaïd-Salim et al. 2003Rot - spASaïd-Salim et al. 2003Rot - spB	MgrA -> SarZ	Ballal et al. 2009
MgrA -> lytSRIngavale et al. 2003MgrA -> arIRSIngavale et al. 2003MgrA -I lytMIngavale et al. 2003MgrA -I lytNIngavale et al. 2009MgrA -I orBTruong-Bolduc et al. 2006MgrA -I tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msrR -I SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG -I abcATruong-Bolduc and Hooper, 2007norG -I abcATruong-Bolduc and Hooper, 2007NorG -I abcACue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlbBronner et al. 2004RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlbBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> hlbBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2003Rot -I sspASaïd-Salim et al. 2003Rot -I sspBSaïd-Salim et al. 2003Rot -I sspBSaïd-Salim et al. 2003Rot -I sspCGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	MgrA -> lrgAB	Ingavale et al. 2003
MgrA -> arlKSIngavale et al. 2003MgrA -I lytMIngavale et al. 2003MgrA -I lytNIngavale et al. 2003MgrA -I norBTruong-Bolduc et al. 2006MgrA -I norCTruong-Bolduc et al. 2006MgrA -I tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006norG -> norBZ006norG -> norBZ007norG -I abcATruong-Bolduc and Hooper, 2007norG -I abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -I icaRCue et al. 2009RNA II -> AgrDNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2003RNA III -> hlaBronner et al. 2004RNA III -I biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004RNA III -I biofilmBoles and Horswill, 2003RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -I biofilmBoles and Horswill, 2008Rot -> sarSBallal et al. 2003Rot -> sarSBallal et al. 2003Rot -> spaBronner et al. 2004Rot -= laplA-FSaïd-Salim et al. 2003 <td< td=""><td>MgrA -> lytSR</td><td>Ingavale et al. 2003</td></td<>	MgrA -> lytSR	Ingavale et al. 2003
MgrA - I lytMIngavale et al. 2003MgrA -I lytNIngavale et al. 2003MgrA -I sarVBallal et al. 2009MgrA -I norBTruong-Bolduc et al. 2006MgrA -I norCTruong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msrR -I SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG -I abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -I icaRCue et al. 2003RNA II -> AgrDNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2003RNA III -> hlaFournier, 2004RNA III -I coaBronner et al. 2004RNA III -I sarSCheung et al. 2003RNA III -I sarSCheung et al. 2003RNA III -I biofilmBoles and Horswill, 2008RNA III -I biofilmBronner et al. 2004RNA III -I biofilmBronner et al. 2004RNA III -I biofilmBronner et al. 2004RNA III -I biofilmBoles and Horswill, 2003Rot -> spaBronner et al. 2004Rot -> spaBronner et al.	MgrA -> arlRS	Ingavale et al. 2003
MgrA - I lytNIngavale et al. 2003MgrA -I sarVBallal et al. 2009MgrA -I norBTruong-Bolduc et al. 2006MgrA -I tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msrR -I SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG -I abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -I icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick and Jiang, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008Rot -> sarSBallal et al. 2003Rot -> sarSBallal et al. 2003Rot -> sarSBallal et al. 2003Rot -> lighSaïd-Salim et al. 2004Rot -l splA-FSaïd-Salim et al. 2004Rot -l splA-FSaïd-Salim et al. 2003Rot -l spAGustafsson and Oscarsson, 2008Rot -l spBZ008Rot -l sspBZ008<	MgrA –I lytM	Ingavale et al. 2003
MgrA - I sarVBallal et al. 2009MgrA - I norCTruong-Bolduc et al. 2006MgrA - I tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006morG -> norBTruong-Bolduc and Hooper, 2007norG> norBTruong-Bolduc and Hooper, 2007norG> norBTruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbi - i icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> sarSCheung et al. 2003Rot -> sdrCSaïd-Salim et al. 2003Rot> spaBronner et al. 2004Rot> spaBronner et al. 2004 <td< td=""><td>MgrA –I lytN</td><td>Ingavale et al. 2003</td></td<>	MgrA –I lytN	Ingavale et al. 2003
MgrA - I norBTruong-Bolduc et al. 2006MgrA - I norCTruong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006msrR -I SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG -I abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -I icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick, 2003RNA II -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008Rot -> sdrCSaïd-Salim et al. 2003Rot -> sgaBronner et al. 2004Rot -l sspASaïd-Salim et al. 2003Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	MgrA –I SarV	Ballal et al. 2009
MgrA - I norCTruong-Bolduc et al. 2006MgrA - I tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006norG -> norBTruong-Bolduc and Hooper, 2007norG -l abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -l icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier et al. 2004RNA III -> biofilmBoles and Horswill, 2008Rot -> sdrCSaïd-Salim et al. 2003Rot -> spaBronner et al. 2004Rot> spaBronner et al. 20	MgrA –I norB	Truong-Bolduc et al. 2006
MgrA Tet38Truong-Bolduc et al. 2006msa -> SarASambanthamoorthy et al. 2006norG -> norBTruong-Bolduc and Hooper, 2007norG l abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbfl icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> bingBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot> spaBronner et al. 2004 <t< td=""><td>MgrA –I norC</td><td>Truong-Bolduc et al. 2006</td></t<>	MgrA –I norC	Truong-Bolduc et al. 2006
msa -> SarASambannamoorthy et al. 2006msrR -I SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG -I abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -I icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrANovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008RNA III -> biofilmBronner et al. 2004RNA III -> sarSCheung et al. 2004RNA III -> biofilmBoles and Horswill, 2008Rot -> sdrCSaïd-Salim et al. 2003Rot -> spaBronner et al. 2004Rot - spASaïd-Salim et al. 2003Rot - spAGustafsson and Oscarsson, 2008Rot - hlgBBronner et al. 2004Rot - sspAGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspCGustafsson and Oscarsson, 2008Rot - hlaBronner et al. 2004	MgrA –I tet38	I ruong-Bolduc et al. 2006
msrR -I SarARossi et al. 2003norG -> norBTruong-Bolduc and Hooper, 2007norG -I abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -I icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008RNA III -I spaBronner et al. 2004RNA III -I spaBronner et al. 2004RNA III -I biofilmBoles and Horswill, 2003Rot -> spaBronner et al. 2004Rot -I spASaïd-Salim et al. 2003Rot -I sspAGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	msa -> SarA	2006
norG -> norBTruong-Bolduc and Hooper, 2007norG -l abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -l icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008RNA III -> biofilmBronner et al. 2004RNA III -> biofilmBoles and Horswill, 2008Rot -> spaBronner et al. 2004Rotl sspASaïd-Salim et al. 2003Rot -l sspAGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004 <td>msrR – I SarA</td> <td>Rossi et al. 2003</td>	msrR – I SarA	Rossi et al. 2003
norG -l abcATruong-Bolduc and Hooper, 2007PIA -> biofilmBoles and Horswill, 2008rbf -l icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hldBronner et al. 2004RNA III -> hldBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -l coaBronner et al. 2004RNA III -l spaBronner et al. 2004RNA III -l sarSCheung et al. 2008RNA III -l biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -l spASaïd-Salim et al. 2003Rot -l spIA-FSaïd-Salim et al. 2003Rot -l spAGustafsson and Oscarsson, 2008Rot -l hlgBBronner et al. 2004Rot -l sspAGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspCGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	norG -> norB	Truong-Bolduc and Hooper, 2007
PIA -> biofilmBoles and Horswill, 2008rbf -l icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III - RotBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - sarSCheung et al. 2008RNA III - biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot l spaBronner et al. 2004Rot l splA-FSaïd-Salim et al. 2003Rot l hlgBBronner et al. 2004Rot l sspAGustafsson and Oscarsson, 2008Rot l sspBGustafsson and Oscarsson, 2008Rot l sspCGustafsson and Oscarsson, 2008Rot l hlaBronner et al. 2004	norG –l abcA	Truong-Bolduc and Hooper, 2007
rbf -l icaRCue et al. 2009RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> locaBronner et al. 2004RNA III -l spaBronner et al. 2004RNA III -l spaBronner et al. 2004RNA III -l spaBronner et al. 2008RNA III -l sarSCheung et al. 2008Rot -> biofilmBoles and Horswill, 2008Rot -> sdrCSaïd-Salim et al. 2003Rot -l splA-FSaïd-Salim et al. 2003Rot -l splA-FSaïd-Salim et al. 2003Rot -l hlgBBronner et al. 2004Rot -l hlgCBronner et al. 2004Rot -l sspAGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspCGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	PIA -> biofilm	Boles and Horswill, 2008
RNA II -> AgrBNovick, 2003RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hldBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III -> bloBronner et al. 2004RNA III -> SarSCheung et al. 2008Rot -> biofilmBoles and Horswill, 2008Rot -> sdrCSaïd-Salim et al. 2003Rot -> sgaBronner et al. 2004Rot -> spaBronner et al. 2004Rot - splA-FSaïd-Salim et al. 2003Rot - splA-FSaïd-Salim et al. 2003Rot - hlgBBronner et al. 2004Rot - hlgCBronner et al. 2004Rot - sspAGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspCGustafsson and Oscarsson, 2008Rot - hlaBronner et al. 2004	rbf –l icaR	Cue et al. 2009
RNA II -> AgrDNovick, 2003RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hldBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2004RNA III -> hlaBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III - RotBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> spaBronner et al. 2004Rot - gehSaïd-Salim et al. 2003Rot - gehSaïd-Salim et al. 2003Rot - aurGustafsson and Oscarsson, 2008Rot - hlgBBronner et al. 2004Rot - sspAGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspCGustafsson and Oscarsson, 2008Rot - hlaBronner et al. 2004	RNA II -> AgrB	Novick, 2003
RNA II -> AgrANovick, 2003RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hldBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2004RNA III -> hlaBronner et al. 2004RNA III -> bloBronner et al. 2004RNA III -> spaBronner et al. 2004Rot -> biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> spaBronner et al. 2004Rot l aurGustafsson and Oscarsson, 2008Rot l hlgCBronner et al. 2004Rot l sspAGustafsson and Oscarsson, 2008Rot l sspBGustafsson and Oscarsson, 2008Rot l sspCGustafsson and Oscarsson, 2008Rot l hlaBronner et al. 2004	RNA II -> AgrD	Novick, 2003
RNA III -> SaeQNovick and Jiang, 2003RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III - RotBronner et al. 2004RNA III - RotBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - SarSCheung et al. 2008RNA III - biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> sarSBallal et al. 2009Rot -> spaBronner et al. 2004Rot - gehSaïd-Salim et al. 2003Rot - splA-FSaïd-Salim et al. 2003Rot - hlgBBronner et al. 2004Rot - hlgCBronner et al. 2004Rot - sspAGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspCGustafsson and Oscarsson, 2008Rot - hlaBronner et al. 2004	RNA II -> AgrA	Novick, 2003
RNA III -> SaePNovick and Jiang, 2003RNA III -> hlbBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaFournier, 2001RNA III - RotBronner et al. 2004RNA III - RotBronner et al. 2004RNA III - RotBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> sarSBallal et al. 2009Rot -> spaBronner et al. 2004Rot - gehSaïd-Salim et al. 2003Rot - splA-FSaïd-Salim et al. 2003Rot - hlgBBronner et al. 2004Rot - hlgCBronner et al. 2004Rot - sspAGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspCGustafsson and Oscarsson, 2008Rot - hlaBronner et al. 2004	RNA III -> SaeQ	Novick and Jiang, 2003
RNA III -> hlbBronner et al. 2004RNA III -> hlaBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -> hlaBronner et al. 2004RNA III - RotBronner et al. 2004RNA III - coaBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - spaBronner et al. 2004RNA III - sarSCheung et al. 2008RNA III - biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> spaBronner et al. 2004Rot - gehSaïd-Salim et al. 2003Rot - splA-FSaïd-Salim et al. 2003Rot - hlgBBronner et al. 2004Rot - hlgCBronner et al. 2004Rot - sspAGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspCGustafsson and Oscarsson, 2008Rot - hlaBronner et al. 2004	RNA III -> SaeP	Novick and Jiang, 2003
RNA III -> hldBronner et al. 2004RNA III -> hlaFournier, 2001RNA III -I RotBronner et al. 2004RNA III -I coaBronner et al. 2004RNA III -I spaBronner et al. 2004RNA III -I sarSCheung et al. 2008RNA III -I biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> sarSBallal et al. 2009Rot -> spaBronner et al. 2004Rot -I gehSaïd-Salim et al. 2003Rot -I splA-FSaïd-Salim et al. 2003Rot -I hlgBBronner et al. 2004Rot -I sspAGustafsson and Oscarsson, 2008Rot -I sspBGustafsson and Oscarsson, 2008Rot -I sspCGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	RNA III -> hlb	Bronner et al. 2004
RNA III -> hlaFournier, 2001RNA III -l RotBronner et al. 2004RNA III -l RotBronner et al. 2004RNA III -l coaBronner et al. 2004RNA III -l spaBronner et al. 2008RNA III -l SarSCheung et al. 2008RNA III -l biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> spaBronner et al. 2004Rot -l gehSaïd-Salim et al. 2003Rot -l splA-FSaïd-Salim et al. 2003Rot -l hlgBBronner et al. 2004Rot -l hlgCBronner et al. 2004Rot -l sspAGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspCGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	RNA III -> hld	Bronner et al. 2004
RNA III -I RotBronner et al. 2004RNA III -I coaBronner et al. 2004RNA III -I spaBronner et al. 2004RNA III -I sarSCheung et al. 2008RNA III -I biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2009Rot -> sarSBallal et al. 2009Rot -> spaBronner et al. 2004Rot -I gehSaïd-Salim et al. 2003Rot -I splA-FSaïd-Salim et al. 2003Rot -I hlgBBronner et al. 2004Rot -I hlgCBronner et al. 2004Rot -I sspAGustafsson and Oscarsson, 2008Rot -I sspBGustafsson and Oscarsson, 2008Rot -I sspCGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	RNA III -> hla	Fournier, 2001
RNA III –I coaBronner et al. 2004RNA III –I spaBronner et al. 2004RNA III –I sarSCheung et al. 2008RNA III –I biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2009Rot -> spaBronner et al. 2004Rot -I gehSaïd-Salim et al. 2003Rot -I splA-FSaïd-Salim et al. 2003Rot -I hlgBBronner et al. 2004Rot -I hlgCBronner et al. 2004Rot -I sspAGustafsson and Oscarsson, 2008Rot -I sspBGustafsson and Oscarsson, 2008Rot -I sspCGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	RNA III –I Rot	Bronner et al. 2004
RNA III –I spaBronner et al. 2004RNA III –I SarSCheung et al. 2008RNA III –I biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2009Rot -> spaBronner et al. 2004Rot -l gehSaïd-Salim et al. 2003Rot -l splA-FSaïd-Salim et al. 2003Rot -l hlgBBronner et al. 2004Rot -l hlgCBronner et al. 2004Rot -l sspAGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspCGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	RNA III –I coa	Bronner et al. 2004
RNA III -I SarSCheung et al. 2008RNA III -I biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> sarSBallal et al. 2009Rot -> spaBronner et al. 2004Rot -l gehSaïd-Salim et al. 2003Rot -l splA-FSaïd-Salim et al. 2003Rot -l hlgBBronner et al. 2004Rot -l hlgCBronner et al. 2004Rot -l sspAGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspCGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	RNA III –I spa	Bronner et al. 2004
RNA III –I biofilmBoles and Horswill, 2008Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> spaBronner et al. 2004Rot -I gehSaïd-Salim et al. 2003Rot -I splA-FSaïd-Salim et al. 2003Rot -I hlgBBronner et al. 2004Rot -I sspAGustafsson and Oscarsson, 2008Rot -I sspAGustafsson and Oscarsson, 2008Rot -I sspBGustafsson and Oscarsson, 2008Rot -I sspBGustafsson and Oscarsson, 2008Rot -I sspCGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	RNA III –I SarS	Cheung et al. 2008
Rot -> biofilmBronner et al. 2004Rot -> sdrCSaïd-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> SarSBallal et al. 2009Rot -> spaBronner et al. 2004Rot -l gehSaïd-Salim et al. 2003Rot -l gphSaïd-Salim et al. 2003Rot -l aurGustafsson and Oscarsson, 2008Rot -l hlgBBronner et al. 2004Rot -l hlgCBronner et al. 2004Rot -l sspAGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspCGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	RNA III –I biofilm	Boles and Horswill, 2008
Rot -> sdrCSald-Salim et al. 2003Rot -> clfBSaïd-Salim et al. 2003Rot -> SarSBallal et al. 2009Rot -> spaBronner et al. 2004Rot - gehSaïd-Salim et al. 2003Rot - splA-FSaïd-Salim et al. 2003Rot - aurGustafsson and Oscarsson, 2008Rot - hlgBBronner et al. 2004Rot - sspAGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspCGustafsson and Oscarsson, 2008Rot - hlaBronner et al. 2004	Rot -> biofilm	Bronner et al. 2004
Rot -> cliBSald-Salim et al. 2003Rot -> SarSBallal et al. 2009Rot -> spaBronner et al. 2004Rot -l gehSaïd-Salim et al. 2003Rot -l SpIA-FSaïd-Salim et al. 2003Rot -l aurGustafsson and Oscarsson, 2008Rot -l hlgBBronner et al. 2004Rot -l hlgCBronner et al. 2004Rot -l sspAGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspCGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	Rot -> sdrC	Said-Salim et al. 2003
Rot -> spaBronner et al. 2009Rot -> spaBronner et al. 2004Rot - gehSaïd-Salim et al. 2003Rot - SplA-FSaïd-Salim et al. 2003Rot - aurGustafsson and Oscarsson, 2008Rot - hlgBBronner et al. 2004Rot - hlgCBronner et al. 2004Rot - sspAGustafsson and Oscarsson, 2008Rot - sspBGustafsson and Oscarsson, 2008Rot - sspCGustafsson and Oscarsson, 2008Rot - hlaBronner et al. 2004	Rot -> CIIB	Ballal at al. 2000
Rot -> spaBronner et al. 2004Rot -I gehSaïd-Salim et al. 2003Rot -I SpIA-FSaïd-Salim et al. 2003Rot -I aurGustafsson and Oscarsson, 2008Rot -I hlgBBronner et al. 2004Rot -I hlgCBronner et al. 2004Rot -I sspAGustafsson and Oscarsson, 2008Rot -I sspBGustafsson and Oscarsson, 2008Rot -I sspCGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	Rot -> Sars	Bronner et el 2004
Rot –I genSaid-Saini et al. 2003Rot –I SpIA-FSaïd-Salim et al. 2003Rot –I aurGustafsson and Oscarsson, 2008Rot –I hlgBBronner et al. 2004Rot –I hlgCBronner et al. 2004Rot –I sspAGustafsson and Oscarsson, 2008Rot –I sspBGustafsson and Oscarsson, 2008Rot –I sspCGustafsson and Oscarsson, 2008Rot –I hlaBronner et al. 2004	Rot -> spa	Saïd Salim at al. 2004
Rot -I aurGustafsson and Oscarsson, 2008Rot -I hlgBBronner et al. 2004Rot -I hlgCBronner et al. 2004Rot -I sspAGustafsson and Oscarsson, 2008Rot -I sspBGustafsson and Oscarsson, 2008Rot -I sspCGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	Rot - Snl A F	Said-Salim et al. 2003
Rot –I aurOustaisson and Oscarsson, 2008Rot –I hlgBBronner et al. 2004Rot –I hlgCBronner et al. 2004Rot –I sspAGustafsson and Oscarsson, 2008Rot –I sspBGustafsson and Oscarsson, 2008Rot –I sspCGustafsson and Oscarsson, 2008Rot –I hlaBronner et al. 2004	Kot –i SpiA-i	Gustafsson and Oscarsson
Rot -I hlgBBronner et al. 2004Rot -I hlgCBronner et al. 2004Rot -I sspAGustafsson and Oscarsson, 2008Rot -I sspBGustafsson and Oscarsson, 2008Rot -I sspCGustafsson and Oscarsson, 2008Rot -I hlaBronner et al. 2004	Rot –l aur	2008
Rot -l hlgCBronner et al. 2004Rot -l sspAGustafsson and Oscarsson, 2008Rot -l sspBGustafsson and Oscarsson, 2008Rot -l sspCGustafsson and Oscarsson, 2008Rot -l hlaBronner et al. 2004	Rot –I hlgB	Bronner et al. 2004
Rot –I sspAGustafsson and Oscarsson, 2008Rot –I sspBGustafsson and Oscarsson, 2008Rot –I sspCGustafsson and Oscarsson, 2008Rot –I hlaBronner et al. 2004	Kot –I hlgC	Bronner et al. 2004
Rot –l sspBGustafsson and Oscarsson, 2008Rot –l sspCGustafsson and Oscarsson, 2008Rot –l hlaBronner et al. 2004	Rot –I sspA	Gustafsson and Oscarsson, 2008
Rot –I sspCGustafsson and Oscarsson, 2008Rot –I hlaBronner et al. 2004	Rot –I sspB	Gustafsson and Oscarsson, 2008
Rot –l hla Bronner et al. 2004	Rot –I sspC	Gustafsson and Oscarsson, 2008
	Rot –I hla	Bronner et al. 2004

Rot –I hlb	Bronner et al. 2004	SarA – I sarT	Schmidt et al. 2001
RsbP -> RsbV	Palma and Cheung, 2001	SarA – I sarV	Ballal et al. 2009
RsbU -> RsbV	Palma and Cheung, 2001	SarA – I sak	Jin et al. 2004
RsbV – I RsbW	Palma and Cheung, 2001	SarR -> agr	Ballal et al. 2009
RsbW – I SigB	Palma and Cheung, 2001	SarD SarA	Gustafsson and Oscarsson,
SaeR-P -> SaeQ	Adhikari and Novick, 2008	SarR –I SarA	2008
SaeR-P -> SaeP	Adhikari and Novick, 2008	SarS -> spa	Cheung et al. 2008
SaeR-P -> hla	Mainiero et al. 2010	SarS -> hla	Cheung et al. 2008
SaeR-P -> hlb	Mainiero et al. 2010	SarT -> SarS	Schmidt et al. 2003
SaeR-P -> spa	Giraudo et al. 1997	SarT –l SarU	Manna and Cheung, 2003
SaeR-P -> fnbA	Mainiero et al. 2010	SarU -> agr	Schmidt et al. 2001
SaeR-P -> hlgB	Rogasch et al. 2006	SarX –l agr	Ballal et al. 2009
SaeR-P -> hlgC	Rogasch et al. 2006	SarZ -> RNAIII	Ballal et al. 2009
SaeR-P -> emp	Johnson et al. 2008	SarZ –I SarS	Ballal et al. 2009
SaeR-P -> eap	Johnson et al. 2008	sdrC -> biofilm	Bartlett and Hulten, 2010
SaeR-P -> coa	Mainiero et al. 2010	SigB -> asp23	Palma et al. 2006
SaeR-P -> $hlgA$	Rogasch et al. 2006	SigB -> clfA	Entenza et al. 2005
SaeR-P-> DNAse	Giraudo et al. 1999	SigB -> SarA	Bischoff et al. 2001
saeRS -> saeP	Adhikari and Novick, 2008	SigB -> SarS	Bronner et al. 2004
saeRS -> saeQ	Adhikari and Novick, 2008	SigB -> cidABC	Rice et al. 2004
saeRS -> saeR	Adhikari and Novick, 2008	SigB -> fnbA	Entenza et al. 2005
saeRS -> saeS	Adhikari and Novick, 2008	SigB –l agr	Bischoff et al. 2001
SaeS -> saeR-P	Adhikari and Novick, 2008	SigB –l lrgAB	Rice et al. 2004
sak –l biofilm	Jin et al. 2004	SigB –l saeRS	Geiger et al. 2008
SarA -> agr	Fournier, 2001	Spa-> biofilm	Boles and Horswill, 2008
SarA -> hlgC	Bronner et al. 2004	SplA-F –l biofilm	Boles and Horswill, 2008
SarA -> hlgB	Bronner et al. 2004	sspA -> sspB	Nickerson et al. 2007
SarA -> tsst	Bronner et al. 2004	sspA –l sspC	Nickerson et al. 2007
SarA -> fnbB	Bronner et al. 2004	sspA –l fnbB	Nickerson et al. 2007
SarA -> fnbA	Bronner et al. 2004	sspA –l fnbA	Karlsson et al. 2001
SarA -> emp	Johnson et al. 2008	sspA –l biofilm	Boles and Horswill, 2008
SarA -> eap	Johnson et al. 2008	sspA –l spa	Karlsson et al. 2001
SarA -> icaADBC	Trotonda et al. 2005	sspB –l biofilm	Boles and Horswill, 2008
SarA -> hla	Bronner et al. 2004	sspC –l sspB	Nickerson et al. 2007
SarA -> SarS	Cheung et al. 2008	walR/K -> isaA	Dubrac et al. 2007
SarA -> Bap	Trotonda et al. 2005	walR/K -> atlA	Dubrac et al. 2007
	Gustafsson and Oscarsson,	walR/K -> lytM	Dubrac et al. 2007
SarA –I sspC	2008	walR/K -> sceD	Dubrac et al. 2007
	Gustafsson and Oscarsson,	walR/K -> ssaA	Dubrac et al. 2007
SarA –I sspA	2008	walR/K -> biofilm	Dubrac et al. 2007
Son A Loop D	Gustafsson and Oscarsson,		
SarA –I SSPB	2008		
SarA – Laur	Gustafsson and Oscarsson,		
	2008		

In this table all the nodes of the constructed network are shown. The -> sign shows the activation while the -I shows the inhibition between the nodes.

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is C The Royal Society of Chemistry 2013

Table 3S. Microarray meta-analysis.

_

A)		1	1	ſ	1	1		
node	<u>A1: Cassat [48]</u> agrA OD 1	<u>A1-T1</u> correlation	<u>agrA up/down</u> <u>sim T1</u>	<u>A2: Cassat [48]</u> agrA OD 3	<u>A2-T3</u> correlation	<u>agrA up/down</u> <u>sim T3</u>	<u>A3-T3</u> correlation	<u>A3: Dunman</u> [49] agrA RN27
abcA								
AgrB			+			+		
AgrC				+				+
AgrD			+			+		+
arlR								
arlS								
asp23								
atlA								
aur						+		+
ссра								
clfA				+				
clfB								+
ClpP								
ClpX								
coa			+					
cody								
fnbA			+			+		
fnbB								
geh			+	+		+		+
hla			+	+		+		+
hlb			+			+		
hld	+		+			+		+
hlgA			+	+		+		
hlgB			+			+		+
hlgC			+			+		+
icaA								
icaB								
icaC								
icaD								
icaR								
isaA								

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is The Royal Society of Chemistry 2013

lrgA $lrgB$ $lrgB$ $lrgB$ $lrgB$ lyM $lrgB$ $lrgB$ $lrgB$ $lrgB$ mra $lrgB$ $lrgB$ $lrgB$ $lrgB$ $lrgB$ mra $lrgB$ $lrgB$ $lrgB$ $lrgB$ $lrgB$ $lrgB$ mra $lrgB$ </th <th></th> <th>CH131720</th> <th>13</th> <th></th> <th></th> <th></th>		CH131720	13			
lrgB	lrgA	 ,				
lytM Image: state	lrgB					
lytN Image: state s	lytM					
lytR Image Image <td< td=""><td>lytN</td><td></td><td></td><td></td><td></td><td></td></td<>	lytN					
hyss	lytR					
msa	lytS					
msrR	msa					
notA Image: Sector of the	msrR					
bf Image: second	norA					
RotImage: second s	rbf					
RsbUImage: start of the start o	Rot					
RsbV Image: state of the state of th	RsbU					
RsbW	RsbV					
Sack + + + SacS - - - sak + - + - SarA - - - - SarV - - - - SarZ - - - - SarZ - - - - SarZ - - - - SigB - - - - SplA - - - - SplB - - + + SplF - - - - SplF - - - - sspA	RsbW					
SacS Image: sak	SaeR		+		+	
sak+++SarA </td <td>SaeS</td> <td></td> <td></td> <td></td> <td></td> <td></td>	SaeS					
SarAImage: set of the set of	sak		+		+	
SarRImage: sard set of the se	SarA					
SarSImage: selection of the sel	SarR					
SarTImage: space of the system o	SarS					
SarU+++SarV </td <td>SarT</td> <td></td> <td></td> <td></td> <td></td> <td></td>	SarT					
SarV Image: sarX <	SarU		+		+	
SarX Image: SarX <	SarV					
SarZ Image: SarZ <	SarX					
sdrC Image: sdrC <	SarZ					
SigB Image: spa start star	sdrC					
spa - SplA + + SplB + + SplC + + SplD + + SplE + + SplF + + sspA - + + sspB - - + +	SigB					
SplA + + + SplB + + + SplC + + + SplD + + + SplE + + + SplE + + + SplE + + + SplF + + + sspA + + + sspB + sspC +	spa					-
SplB + + + SplC + + + SplD + + + SplE + + + SplF + + + ssaA - + + sspA - + + sspB - - + sspC - - +	SplA				+	+
SplC + + SplD + + SplE + + SplF + + sspA - - sspB - - sspC - -	SplB				+	+
SpID + + SpIE + + SpIF + + ssaA + sspA + + sspB + sspC + +	SplC				+	
SplE + SplF + SsaA + sspA + sspB + sspC +	SplD				+	+
SplF + + + ssaA + + + +	SplE				+	
ssaA	SplF				+	+
sspA + sspB - sspC -	ssaA					
sspB sspC +	sspA				+	
sspC +	sspB					
	sspC					+

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is C The Royal Society of Chemistry 2013

tsst					
Number of Nodes	70		70	70	
concordant nodes	57		50	56	
non concordant nodes	13		20	14	
nodes with changes in the same direction	1		3	11	
<i>in vitro</i> to <i>in</i> <i>silico</i> consistency in %	81,43		71,43	80,00	

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 B)

<u>node</u>	<u>B1: Cassat [48]</u> sarA OD 1	<u>B1-T1</u> correlation	<u>sarA up/down</u> sim T1	<u>B2: Cassat [48]</u> sarA OD 3	<u>B2-T3</u> correlation	<u>sarA up/down</u> sim T3	<u>B3-T3</u> correlation	<u>B3: Dunman</u> [49] agrA RN27
abcA								
AgrA								+
AgrB			+					+
AgrC								+
AgrD			+					+
arlR								
arlS								
asp23								
atlA								-
aur	-			-				-
ссра								
clfA								
clfB								
ClpP								
ClpX								
coa								
cody								
fnbA								
fnbB			+			+		
geh						+		
hla	-					+		+
hlb								
hld						+		+
hlgA								
hlgB			+			+		+
hlgC			+			+		+
icaA			+			+		
icaB			+			+		
icaC			+			+		
icaD			+			+		
icaR								
isaA								
lrgA								
lrgB								-

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is The Royal Society of Chemistry 2013

		1		·	1					
	lytM									
	lytN	-			-					
	lytR									
	lytS									
	msa									
	msrR									
	norA									
	rbf									
	Rot									
	RsbU									
	RsbV									
	RsbW									
	SaeR			+						
	SaeS									
	sak	-								
	SarR									
	SarS									
	SarT									
	SarU			+			+			
	SarV									
	SarX									
	SarZ									
	sdrC	-								
	SigB									
	spa							-		
	SplA							+		
	SplB							+		
	SplC									
	SplD							+		
	SplE									
ĺ	SplF									
ĺ	ssaA									
ĺ	sspA						+			
	sspB	-			-					
	sspC	-			-			-		
	tsst			+			+			
	-		-		-	-				

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013

	clety of Chemistry 20	5			
Number of nodes	70		70	70	
concordant nodes	50		53	48	
non concordant nodes	20		17	22	
nodes with changes in the same direction	0		0	4	
<i>in vitro</i> to <i>in</i> <i>silico</i> consistency in %	71,43		75,71	68,57	

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is The Royal Society of Chemistry 2013

C)	Biofilm vs. Planctonic										
node	<u>Biofilm Vs</u> <u>Planktonic</u> (SS) Sim. 1	<u>Biofilm Vs Planktonic</u> (<u>AIP) Sim. 2</u> (compared to Sim 1)	<u>C1-Sim1</u> <u>correlation</u>	<u>C1-Sim2</u> correlation	<u>C1 Biofilm Vs</u> <u>Planktonic</u> (maturing) [50]	<u>C2-Sim1</u> correlation	<u>C2-Sim2</u> correlation	<u>C2 Biofilm Vs</u> <u>Planktonic</u> <u>24hr [51]</u>	<u>C3-Sim1</u> correlation	<u>C3-Sim2</u> correlation	<u>C3 Biofilm Vs</u> <u>Planktonic</u> <u>OD 3.5 [52]</u>
abcA											
AgrA											
AgrB	-	-									
AgrC	-										
AgrD	-	-									
arlR											
arlS											
asp23								+			
atlA					+						
aur	-	-									
ссра											
clfA								+			
clfB	+							+			
ClpP											
ClpX											
coa											
cody											
fnbA		-									
fnbB											
geh	-				+						
hla	-				+						
hlb	-										
hld	-	-									
hlgA	-										
hlgB	-										
hlgC	-										
icaA											
icaB											
icaC								+			
icaD											+
icaR											
isaA											
lrgA			, and the second s								

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013

la ris ⊜ i ne Ro	yai Society of	Chemistry 2013					
IrgB							
lytM							
lytP							
lytS							
Tyt3							
msrR							
norA							
rbf							
Rot	+						
RsbU							
RsbV							
RsbW							
SaeR	-	-					
SaeS	-						
sak	-	-					
SarA							
SarR							
SarS	+						
SarT	+						
SarU	-						
SarV							
SarX					+		
SarZ							
sdrC	+				+		
SigB							
spa	+						-
SplA	-	-					
SplB	-	-					
SplC	-	-					-
SplD	-	-					
SplE	-	-					
SplF	-	-					
ssaA							+
sspA	-						
sspB	-						
sspC		-					
tsst							

Number of Nodes		71	71	71	71	71	71	
concordant nodes		41	54	40	51	41	55	
non concordant nodes		30	17	31	20	30	16	
nodes with changes in the same direction		0	0	2		1	1	
<i>in vitro</i> to <i>in</i> <i>silico</i> consistency in %		57,75	76,06	56,34	71,83	57,75	77,46	

¹(A) Three in vitro *AgrA*⁺ vs. *AgrA*⁻ scenarios are compared to an *in silico AgrA*⁺ vs. *AgrA*⁻ scenario. In (B) three *SarA*⁺ vs. *SarA*⁻ scenarios are compared to an *in silico SarA*⁺ vs. *SarA*⁻ scenario. In (C) three *in vitro* biofilm forming vs. not biofilm forming scenarios are compared to two *in silico* biofilm forming vs. no biofilm forming scenarios. The dark green colour in one of the correlation columns means that this node showed no difference between *in vitro* and *in silico*. The dark green colour in one of the correlation columns means that this node did not show the same reaction in the *in vitro* and the *in silico* conditions. "+" indicates that the node is up-regulated three fold in the wild type strain or 2.5 fold in the biofilm forming scenarios are compared can also be found in the Materials and Methods.

Table 4S. Different nodes and their description.

node	Gene Description
abcA	ABC transporter, permease/AIP-binding protein
AgrA	accessory gene regulator protein A (autoinducer sensor protein response regulator protein)
AgrB	accessory gene regulator protein B (putative autoinducer processing protein)
AgrC	accessory gene regulator protein C (autoinducer sensor protein)
AgrD	accessory gene regulator protein D (AIP precursor)
arlR	DNA-binding response regulator ArlR
arlS	sensor histidine kinase ArlS
asp23	alkaline shock protein 23
atlA	bifunctional autolysin
aur	zinc metalloproteinase aureolysin
ccpa	catabolite control protein A
clfA	clumping factor A (fibrinogen and keratin binding surface anchored protein)
clfB	clumping factor B (fibrinogen and keratin binding surface anchored protein)
ClpP	locus for proteolytic subunit ClpP and the Clp ATPase ClpX
ClpX	locus for proteolytic subunit ClpP and the Clp ATPase ClpX
coa	staphylocoagulase precursor
cody	transcription pleiotropic repressor codY
fnbA	fibronectin binding protein A
fnbB	fibronectin binding protein B
geh	glycerol ester hydrolase
hla	alpha-hemolysin
hlb	beta-hemolysin
hld	delta-hemolysin
hlgA	gamma-hemolysin component A
hlgB	gamma-hemolysin component B
hlgC	gamma-hemolysin component C
icaA	intercellular adhesion protein A
icaB	intercellular adhesion protein B
icaC	intercellular adhesion protein C
icaD	intercellular adhesion protein D
icaR	ica operon transcriptional regulator
isaA	immunodominant antigen A
lrgA	holin-like protein LrgA
lrgB	holin-like protein LrgB
lytM	peptidoglycan hydrolase
lytN	cell wall hydrolase
lytR	two-component response regulator lytR
lytS	two-component sensor histidine kinase LytS
msa	hypothetical protein
msrR	peptide methionine sulfoxide reductase regulator MsrR
norA	multi drug resistance protein (norA)
rbf	ribosome-binding factor
Rot	repressor of toxins
RsbU	sigma factor B regulator protein
RsbV	anti-sigma B factor antagonist
RsbW	anti-sigmaB factor
SaeR	DNA-binding response regulator SaeR
SaeS	sensor histidine kinase SaeS

sak	staphylokinase precursor
SarA	staphylococcal accessory regulator A
SarR	staphylococcal accessory regulator R
SarS	staphylococcal accessory regulator S
SarT	staphylococcal accessory regulator T
SarU	staphylococcal accessory regulator U
SarV	staphylococcal accessory regulator V
SarX	staphylococcal accessory regulator X
SarZ	staphylococcal accessory regulator Z
sdrC	Ser-Asp rich fibrinogen-binding, bone sialoprotein-binding protein
SigB	RNA polymerase sigma-B factor
spa	immunoglobulin G binding protein A
SplA	serine protease SplA
SplB	serine protease SplB
SplC	serine protease SplC
SplD	serine protease SplD
SplE	serine protease SplE
SplF	serine protease SplF
ssaA	secretory antigen precursor
sspA	serine protease (V8 protease)
sspB	cysteine protease precursor
sspC	cysteine protease
tsst	toxic shock syndrome toxin-1

Supplementary References

- [1]A. Di Cara, A. Garg, G. De Micheli, I. Xenarios, L. Mendoza, Dynamic simulation of regulatory networks using SQUAD BMC Bioinformatics, 2007, 8, 462.
- ⁵ [2]S. J. Yang, K. C. Rice, R. J. Brown, T. G. Patton, L. E. Liou, Y. H Park, K. W. Bayles. A LysR-type regulator, CidR, is required for induction of theStaphylococcus aureus cidABC operon. *Journal of Bacteriology*, 2005, 187(17), 5893–5900.
- 10 [3]R. P. Novick. Autoinduction and signal transduction in the regulation of staphylococcal virulence. *Molecular Microbiology*, 2003, 48(6), 1429–1449.
- [4]T. Jin, M. Bokarewa, T. Foster, J. Mitchell, J. Higgins, A. Tarkowski. *Staphylococcus aureus* Resists Human
- 15 Defensins by Production of Staphylokinase, a Novel Bacterial Evasion Mechanism. The Journal of Immunology, 2004, 172, 1169-1176.
- [5]K. A. Schmidt, A. C. Manna, S. Gill, A.L. Cheung. SarT Influences sarS Expression in Staphylococcus aureus. Infection and Immunity, 2001, 69(8), 4749–4758.
- [6]B. Fournier, A. Klier, G. Rapoport. The two-component system ArIS-ArIR is a regulator of virulence gene expression in Staphylococcus aureus. Molecular Microbiology, 2001, 41(1), 247-261.
- 25 [7]B. Fournier, R. Aras, D.C. Hooper. Expression of the Multidrug Resistance Transporter NorA from Staphylococcus-aureus Is Modified by a Two-Component Regulatory System. Journal of Bacteriology, 2000, 182(3), 664–671.
- 30 [8]N. N. Nickerson, L. Prasad, L. Jacob, L. T. Delbaere, M. J. McGavin. Activation of the SspA Serine Protease Zymogen of *Staphylococcus aureus* Proceeds through Unique Variations of a Trypsinogen-like Mechanism and Is Dependent on Both Autocatalytic and
- 35 Metalloprotease-specific Processing. The Journal of Biological Chemestry, 2007, 282(47), 34129–34138.
- [9]B. R. Boles, A. R. Horswill. agr-Mediated Dispersal of Staphylococcus aureus Biofilms. *PLoS Pathog*, 2008, 4(4), e1000052.
- 40 [10]M. P. Trotonda, A. C. Manna, A. L. Cheung, I. Lasa, J. R. Penadés. SarA Positively Controls Bap-Dependent Biofilm Formation in *Staphylococcus aureus*. *Journal of Bacteriology*, 2005, 187(16), 5790–5798.
- [11]C. D. Majerczyk, M. R. Sadykov, T. T. Luong, C. Lee, G.A. Somerville, A. L. Sonenshein. *Staphylococcus aureus CodY*
- 45 Somerville, A. L. Sonenshein. *Staphylococcus aureus CodY* Negatively Regulates Virulence Gene Expression. *Journal* of Bacteriology, 2008, 190(7), 2257–2265.
- [12]K. Seidl, C. Goerke, C. Wolz, D. Mack, B. Berger-Bächi, M. Bischoff. *Staphylococcus aureus CcpA* Affects Biofilm
- 50 **Formation.** Infection and Immunity, 2008, **76(5)**, 2044–2050.
- [13]K. C. Rice, E. E. Mann, J. L. Endres, E. C. Weiss, J. E. Cassat, M. S. Smeltzer, K. W. Bayles. The cidA murein hydrolase regulator contributes to DNA release and
 ⁵⁵ Biofilm development in Staphylococcus aureus. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(19), 8113–8118.
- [14]A. H. Bartlett, K. G. Hulten. Staphylococcus aureus Pathogenesis Secretion Systems, Adhesins, and Invasins. The Pediatric Infectious Disease Journal, 2010, 29(9), 860-861.
- [15]A. L. Cheung, K. A. Nishina, M. P. T. Pous, S. Tamber. The SarA protein family of *Staphylococcus aureus*. Int. J. Biochem Cell Biol., 2008, 40(3), 355–361.
- [16]M. Palma, A. Haggar, J. I. Flock. Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. Journal of Bacteriology, 1999, 181(9), 2840–2845.
- [17]M. Nagata, C. Kaito, K. Sekimizu. Phosphodiesterase Activity of CvfA Is Required for Virulence in

- 70 **Staphylococcus aureus.** The Journal of Biological Chemestry, 2008, **283(4)**, 2176–2184.
- [18]M.J. Huseby, A.C. Kruse, J. Digre, P.L. Kohler, J.A. Vocke, E.E. Mann, K.W. Bayles, G.A. Bohach, P.M. Schlievert, D.H. Ohlendorf, C.A. Earhart. Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal
- Biofilms. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(32), 14407–14412.
- [19]M. Johnson, A. Cockayne, J.A. Morrissey. Iron-Regulated Biofilm Formation in *Staphylococcus aureus* Newman
 Requires *ica* and the Secreted Protein Emp. Infection and Immunity, 2008, 76(4), 1756–1765.
- [20]N. C. Caiazza, G. A. O'Toole. Alpha-Toxin Is Required for Biofilm Formation by Staphylococcus aureus. Journal of Bacteriology, 2003, 185(10), 3214–3217.
- 85 [21]C. Vuong, H. L. Saenz, F. Götz, M. Otto. Impact of the agr Quorum-Sensing System on Adherence to Polystyrene in Staphylococcus aureus. The Journal of Infectious Diseases, 2000, 182, 1688–93.
- [22]D. Cue, M. G. Lei, T. T. Luong, L. Kuechenmeister, P. M. Dunman, S. O'Donnell, S, Rowe, J. P. O'Gara, C. Y. Lee. *Rbf* Promotes Biofilm Formation by *Staphylococcus aureus* via Repression of *icaR*, a Negative Regulator of *icaADBC*. *Journal of Bacteriology*, 2009, 191(20), 6363–6373.
- 95 [23]S. Bronner, H. Monteil, G. Prévost. Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. *FEMS Microbiology Reviews*, 2004, 28, 183– 200.
- [24]A. Ballal, B. Ray, A. C. Manna. sarZ, a sarA Family Gene,
 Is Transcriptionally Activated by MgrA and Is Involved in the Regulation of Genes Encoding Exoproteins in Staphylococcus aureus. Journal of Bacteriology, 2009, 191(5), 1656–1665.
- [25]S.S. Ingavale, W. Van Wamel, A.L. Cheung.
 Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Molecular Microbiology, 2003, 48(6), 1451–1466.
- [26]Q. C. Truong-Bolduc, J. Strahilevitz, D. C. Hooper. NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2006,
- 50(3), 1104–1107.
 [27]K. Sambanthamoorthy, M. S. Smeltzer, M. O. Elasri. Identification and characterization of *msa* (SA1233), a gene involved in expression of *SarA* and several virulence factors in Staphylococcus aureus. *Microbiology*, 2006, 152, 2559–2572.
- [28]J. Rossi, M. Bischoff, A. Wada, B. Berger-Bächi. MsrR, a Putative Cell Envelope-Associated Element Involved in Staphylococcus aureus sarA Attenuation. Antimicrobial Agents and Chemotherapy, 2003, 47(8), 2558–2564.
- [29]Q. C. Truong-Bolduc, D. C. Hooper. The Transcriptional Regulators NorG and MgrA Modulate Resistance to both Quinolones and β-Lactams in Staphylococcus aureus. Journal of Bacteriology, 2007, 189(8), 2996–3005.
- 125 [30]R. P. Novick, D. Jiang. The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. *Microbiology*, 2003, 149, 2709–2717.
 - [31]B. Saïd-Salim, P. M. Dunman, F. M. McAleese, D. Macapagal, E. Murphy, P. J. McNamara, S. Arvidson, T. J.
- Foster, S. J. Projan, B. N. Kreiswirth. Global Regulation of Staphylococcus aureus Genes by Rot. Journal of Bacteriology, 2003, 185(2), 610–619.
- [32]E. Gustafsson, J. Oscarsson. Maximal transcription of aur (aureolysin) and *sspA* (serine protease) in Staphylococcus
 aureus requires staphylococcal accessory regulator R (*sarR*) activity. *FEMS Microbiol Lett.*, 2008, 284, 158–164.
- [33]M. Palma, A. L. Cheung oB Activity in Staphylococcus aureus Is Controlled by RsbU and an Additional Factor(s) during Bacterial Growth. Infection and Immunity, 2001, 69(12), 7858–7865.

- [34]R. P. Adhikari, R. P. Novick. Regulatory organization of the staphylococcal sae locus. *Microbiology*, 2008, 154, 949–959.
- [35]M. Mainiero, C. Goerke, T. Geiger, C. Gonser, S. Herbert, C.
 Wolz. Differential Target Gene Activation by the Staphylococcus aureus Two-Component System saeRS Journal of Bacteriology, 2010, 192(3), 613–623.
- [36]A.T. Giraudo, A.L. Cheung, R. Nagel. The sae locus of Staphylococcus aureus controls exoprotein synthesis at
- 10 **the transcriptional level.** Arch. Microbiol., 1997, **168**, 53–58.
- [37]K. Rogasch, V. Rühmling, J. Pané-Farré, D. Höper, C. Weinberg, S. Fuchs, M. Schmudde, B. M. Bröker, C. Wolz, M. Hecker, S. Engelmann. Influence of the Two-
- 15 Component System SaeRS on Global Gene Expression in Two Different Staphylococcus aureus Strains. Journal of Bacteriology, 2006, 188(22), 7742–7758.
- [38]A.T. Giraudo, A. Calzolari, A.A. Cataldi, C. Bogni, R. Nagel. The sae locus of Staphylococcus aureus encodes a
- 20 two-component regulatory system. FEMS Microbiology Letters, 1999, 177, 15-22.
- [39]K. A. Schmidt, A. C. Manna, A. L. Cheung. SarT Influences sarS Expression in Staphylococcus aureus. Infection and Immunity, 2003, 71(9), 5139–5148.
- 25 [40]A. C. Manna, A. L. Cheung. sarU, a sarA Homolog, Is Repressed by SarT and Regulates Virulence Genes in Staphylococcus aureus. Infection and Immunity, 2003, 71(1), 343–353.
- [41]M. Palma, A. Bayer, L. I. Kupferwasser, T. Joska, M.R.
 Yeaman, A. L. Cheung. Salicylic Acid Activates Sigma Factor B by *rsbU*-Dependent and –Independent Mechanisms. *Journal of Bacteriology*, 2006, 188(16), 5896–5903.
 - [42]J. M. Entenza, P. Moreillon, M. M. Senn, J. Kormanec, P. M.
- ³⁵ Dunman, B. Berger-Bächi, S. Projan, M. Bischoff. Role of σB in the Expression of *Staphylococcus aureus* Cell Wall Adhesins *ClfA* and *FnbA* and Contribution to Infectivity in a Rat Model of Experimental Endocarditis. *Infection and Immunity*, 2005, **73**(2), 990–998.
- 40 [43]M. Bischoff, J. M. Entenza, P. Giachino. Influence of a Functional sigB Operon on the Global Regulators sar and agr in Staphylococcus aureus. Journal of Bacteriology, 2001, 183(17), 5171–5179.
- [44]K. C. Rice, T. Patton, S. J. Yang, A. Dumoulin, M. Bischoff,
- 45 K.W. Bayles. Transcription of the Staphylococcus aureus cid and lrg Murein Hydrolase Regulators Is Affected by Sigma Factor B. Journal of Bacteriology, 2004, 186(10), 3029–3037.
- [45] T. Geiger, C. Goerke, M. Mainiero, D. Kraus, C. Wolz. The
- 50 Virulence Regulator Sae of Staphylococcus aureus: Promoter Activities and Response to Phagocytosis-Related Signals. Journal of Bacteriology, 2008, 190(10), 3419–3428.
- [46] A. Karlsson, P. Saravia-Otten: K. Tegmark, E. Morfeldt, S.
 Arvidson. Decreased Amounts of Cell Wall-Associated
- Protein A and Fibronectin-Binding Proteins in Staphylococcus aureus sarA Mutants due to Up-Regulation of Extracellular Proteases. Infection and Immunity, 2001, 69(8), 4742–4748.
- [47]S. Dubrac, I. Gomperts-Boneca, O. Poupel, T. Msadek. New Insights into the WalK/WalR (YycG/YycF). Essential Signal Transduction Pathway Reveal a Major Role in Controlling Cell Wall Metabolism and Biofilm Formation in Staphylococcus aureus. Journal of Bacteriology, 2007, 189(22), 8257–8269.
- [48]J. Cassat, P. M. Dunman, E. Murphy, S. J. Projan, K. E. Beenken, K. J. Palm, S. Yang, K. C. Rice, K. W. Bayles, M. S. Smeltzer. Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the

laboratory strain RN6390. *Microbiology*, 2006, **152**, 3075–3090.

- [49]P. M. Dunman, E. Murphy, S. Haney, D. Palacios, G. Tucker-Kellogg, S. Wu, E. L. Brown, R. J. Zagursky, D.
- ⁷⁵ Shlaes, S. J. Projan. Transcription Profiling-Based Identification of *Staphylococcus aureus* Genes Regulated by the *agr* and/or *sarA* Loci. *Journal of Bacteriology*, 2001, 183(24), 7341.
- [50]R. A. Brady, J. G. Leid, A.K. Camper, J. W. Costerton, M.E. Shirtliff. Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. *Infect. Immun.*, 2006, 74(6), 3415.
- [51]A. Resch, R. Rosenstein, C. Nerz, F. Götz. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl. Environ. Microbiol., 2005, 71(5), 2663.
- [52]K. E. Beenken, P. M. Dunman, F. McAleese, D. Macapagal, E. Murphy, S. J. Projan, Jon S. Blevins and Mark S. Smeltzer. Global gene expression in *Staphylococcus*
- 90 *aureus* biofilms. *Journal of Bacteriology*, 2004, **186(14)**, 4665.