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Analytical	 approximation	 of	 the	 temporal	 changes	 in	 protein	 species	
distribution	
Note that several equations from the main text are repeated  in the Supplementary  Information to 
present a coherent story. For clarity, they retain the numbering of the main text (‘equation #’), while 
new equations are labeled ‘supplementary equation #’. 

Introduction	
The  temporal behavior of  the  kinetic  photocycle model presented  in  Figure  2A  can be  described 
using  three  differential  equations  (equations  1‐3).  These  equations  can  be  used  to  simulate  the 
temporal changes  in the protein species distribution of a photoreceptor such as YtvA (Figure 2B‐D; 
see  the main  text). However,  for  the  purpose  of  predictions  of  routine  experiments,  differential 
equations  can  be  too  cumbersome.  Therefore,  it  is  of  interest  to  obtain  a  simple  analytical 
expression for the temporal changes in protein species distribution. 
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Required	approximations	to	simplify	the	model	
To obtain such an expression, we followed a procedure analogous to the one outlined in Hendriks & 
Hellingwerf  (2009)1.  We  assumed  that  the  contribution  of  the  excited  state  D*  to  the  species 
distribution of YtvA is negligible. Our simulations with parameters for YtvA confirm that D* does not 
accumulate significantly  (Figure 2C). This  leads to supplementary equation 1, where ctot represents 
the total concentration of the photoreceptor. In light of this, it is also reasonable to assume that the 
change in [D] mirrors the change in [S], as shown in supplementary equation 2. 
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Derivation	of	an	equation	for	the	temporal	change	in	concentration	of	the	dark	state	
Substituting equations 1 and 3 into supplementary equation 2 allows the derivation of an expression 
for D* in D (supplementary equation 4). 

[S][D*] [S][D*]1
1

[D] 









 reperepe

yD
exD kkkk

Q
k   Supp. eq. 3 

[D][D*] 



pe

exDyD

k

kQ
  Supp. eq. 4 

Substituting  this  result  and  the  fact  that  [S]  is  equal  to  ctot  –  [D]  (as  follows  from 
supplementary  equation  1)  into  equation  1  results  in  supplementary  equation  5,  which  can  be 
rewritten to supplementary equation 6. 
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This equation can be rewritten and integrated to obtain a solution for [D]. Note that this uses 
the same assumption that kexD is independent of [D] as was made for the derivation of the analytical 
equations for the steady‐state fractions (see the main text and in particular equation 4). 
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Herein, [D]0 represents the starting concentration of the protein in the dark state. The fraction 
of the protein in the dark state can easily be derived from supplementary equation 10. 
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  Eq. 30 

If the time  is set to  infinite  in equation 30, the exponential part of the equation  is canceled, 
and the equation simplifies to the steady‐state equation for the fraction of protein in the dark state 
(equation 28), as expected. 

Using  the  same  parameters  for  YtvA  as  used  in  Figure  2,  we  compared  the  outcome  of 
equation  30  (solid  line  in  Supplementary  Figure  1)  to  simulations with  the  differential  equations 
(crosses). Both simulations overlap, verifying the validity of the assumptions. 

 

 
Supplementary Figure 1. Comparison of  the  fraction of  the protein  in  the dark state as calculated 
with the analytical approximation (equation 30; solid line, no symbols), and via a simulation with the 
differential  equations  1‐3  (crosses,  no  line),  using  the  same  parameters  as  in  Figure  2.  In  the 
simulation, a light from the same source as in Figure 2 with intensity 1 μEinstein ⋅ m‐2 ⋅ s‐1 was turned 
on at time point zero. After 2.5 hours, the light was turned off again. 
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Derivation	of	an	equation	for	the	time	needed	to	reach	a	given	percentage	of	steady	state	
Another interesting application of equation 30 is in rewriting it to obtain an expression for the time it 
takes before a certain percentage of steady state  is reached. If fsteady state  is taken to be the fraction 
(between 0 and 1) of  the  change  in  response  to  the given perturbation  in  light  intensity  that has 
taken place, then the relationship in supplementary equation 11 holds. 

  tkkQ reexDyDef  1statesteady   Supp. eq. 11 

This can be rewritten to obtain equation 31. 
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It is important to note that fsteady state represents the fraction of the change in fD that will take 
place as a result of the perturbation in light intensity. Thus, an fsteady state of 0.95 is equal to 0.95 ∙ ΔfD 
(see Supplementary Figure 2).  It should also be noted that  it  is not possible to use this  formula to 
calculate the time it takes to reach steady state, as a true steady state takes an infinite time to reach. 

 

 
Supplementary  Figure  2.  Illustration  of  the  value  of  fsteady  state  in  the  same  simulation  as  in 
Supplementary  Figure  1.  The  solid  line  is  the  same  as  in  Supplementary  Figure  1  (the  result  of 
applying equation 30), while the dotted line represents the value of fsteady state. 
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