SUPPORTING INFORMATION

Bi and tri-substituted Phenyl Ring Containing Bisbenzimidazoles Bind Differentially with DNA Duplexes: A Biophysical and Molecular Simulation study

Manish Singh^{a,b,†}, Souvik Sur^{b,†}, Gaurav Kumar Rastogi^b, B. Jayaram^c, Vibha Tandon^{*b}

[†]First and second authors have equal contribution to work

^aDr. B. R. Ambedkar Center for Biomedical Research, Delhi, India;^b Department of Chemistry, University of Delhi, Delhi-110007,India; ^cSupercomputing Facility for Bioinformatics, Indian Institute of Technology, New Delhi-110016, India;

		Page
1.	UV absorption spectra of bis-benzimidazole (DFA, DCA, DMA, TMA & Hoechst 33342)	
	alone and in the presence of synthetic oligomers	S2
2.	UV melting profiles of oligomers alone and in the presence of ligands	S3-S5
3.	CD scans of oligomers with increasing concentrations of ligands	S6-S9
4.	Fluorescence-detected binding of oligomers with ligands	S10-S13
5.	MD Simulation protocols	S14
6.	Ligand-Docked structure of Hoechst-33342, DMA, TMA and DFA with (i) d(ATATATATATATATAT) ₂ ,(ii) d(GAAAATTTTC) ₂ and (iii) d(GTTTTAAAAC) ₂	S15-S18
7.	RMSD plots of Free-DNA duplexes up to 25ns simulation	S19
8.	Correlation diagrams of Experimental and Calculated data	S20-S21

Fig. S1 UV absorption spectra of **DFA** (A), **DCA** (B), **DMA** (C), **TMA** (D) & **Hoechst 33342** (E) alone and in the presence of synthetic duplex at drug/oligomer ratio r=1. The ligand and DNA concentration was 5μ M. Oligo-1: d(GCGCGCGCGCGCGCGCGC)₂; Oligo-2: d(ATATATATATATATATAT)₂; Oligo-3: d(GAAAATTTC)₂; Oligo-4: d(GTTTTAAAAC)₂

Fig. S2 UV melting profiles of oligomer-2 i.e.; $d(ATATATATATATATATAT)_2$ alone and in the presence of ligands (DFA, DCA, DMA, TMA & Hoechst 33342) at drug/oligomer ratio, r = 0-2. Samples of DNA (2.5 µM) were mixed with ligand (1.25-5 µM) in buffer [20mM sodium cacodylate, 100mM NaCl (pH 7.2)] before being heated at 95°C for 5 min and slowly annealed to 4°C before UV analysis at 260 nm from 7 to 95°C at a heating rate of 0.2 °C/min. T_m values were determined by first-derivative analysis.

Fig. S3 UV melting profiles of oligomer-3 i.e.; $d(GAAAATTTTC)_2$ alone and in the presence of ligands (DFA, DCA, DMA, TMA & Hoechst 33342) at drug/oligomer ratio, r = 0-2. Samples of DNA (2.5 μ M) were mixed with ligand (1.25-5 μ M) in buffer [20mM sodium cacodylate, 100mM NaCl (pH 7.2)] before being heated at 95°C for 5 min and slowly annealed to 4°C before UV analysis at 260 nm from 7 to 95°C at a heating rate of 0.2°C/min. T_m values were determined by first-derivative analysis.

Fig. S4 UV melting profiles of oligomer-4 i.e.; d(GTTTTAAAAC)₂ alone and in the presence of ligands (DFA, DCA, DMA, TMA & Hoechst 33342) at drug/oligomer ratio, r = 0-2. Samples of DNA (2.5 μ M) were mixed with ligand (1.25-5 μ M) in buffer [20mM sodium cacodylate, 100mM NaCl (pH 7.2)] before being heated at 95°C for 5 min and slowly annealed to 4°C before UV analysis at 260 nm from 7 to 95°C at a heating rate of 0.2°C/min. T_m values were determined by first-derivative analysis.

ratio.

Fig. S5 CD scans of oligomer-1 i.e.; d(GCGCGCGCGCGCGCGCGCGC)₂ with increasing concentrations of ligands (DFA, DCA, DMA, TMA & Hoechst 33342) at 10°C. Samples of oligomer (5 μ M) were scanned from 460 to 210 nm after serial additions of concentrated ligand with stirring. Peaks around 350 nm correspond to ligand-oligomer complex. Buffer: 20mM sodium cacodylate, 100mM NaC1 (pH 7.2). A) DFA-oligomer DNA; B) DCA-oligomer; C) DMA-oligomer; D) TMA-oligomer; E) Hoechst 33342-oligomer; r stands for drug/oligomer

Fig. S6 CD scans of oligomer-2 i.e.; $d(ATATATATATATATATATAT)_2$ with increasing concentrations of ligands (DFA, DCA, DMA, TMA & Hoechst 33342) at 10°C. Samples of oligomer (5 µM) were scanned from 460 to 210 nm after serial additions of concentrated ligand with stirring. Peaks around 350 nm correspond to ligand-oligomer complex. Buffer: 20mM sodium cacodylate, 100mM NaCl (pH 7.2). A) DFA-oligomer DNA; B) DCA-oligomer; C) DMA-oligomer; D) TMA-oligomer; E) Hoechst 33342-oligomer; r stands for drug/oligomer ratio.

Fig. S7 CD scans of oligomer-3 i.e.; $d(GAAAATTTTC)_2$ with increasing concentrations of ligands (**DFA, DCA, DMA, TMA & Hoechst 33342**) at 10°C. Samples of oligomer (5 µM) were scanned from 460 to 210 nm after serial additions of concentrated ligand with stirring. Peaks around 350 nm correspond to ligand-oligomer complex. Buffer: 20mM sodium cacodylate, 100mM NaCl (pH 7.2). A) **DFA**-oligomer DNA; B) **DCA**-oligomer; C) **DMA**-oligomer; D) **TMA**-oligomer; E) **Hoechst 33342**-oligomer; r stands for drug/oligomer ratio.

Fig. S8 CD scans of oligomer-4 i.e.; d(GTTTTAAAAC)₂ with increasing concentrations of ligands (**DFA, DCA, DMA, TMA & Hoechst 33342**) at 10°C. Samples of oligomer (5 μ M) were scanned from 460 to 210 nm after serial additions of concentrated ligand with stirring. Peaks around 350 nm correspond to ligand-oligomer complex. Buffer: 20mM sodium cacodylate, 100mM NaCl (pH 7.2). A) **DFA**-oligomer DNA; B) **DCA**-oligomer; C) **DMA**-oligomer; D) **TMA**-oligomer; E) **Hoechst 33342**-oligomer; r stands for drug/oligomer ratio.

Fig. S9 Fluorescence-detected binding of oligomer-3 i.e.; $d(ATATATATATATATATATAT)_2$ with ligands. Small aliquots (1-30 µL) of DNA (1 µM) were added to a solution of ligand (1ml of a 1µM solution) before fluorescence analysis (emission scanning from 400 to 650 at 2 nm/s; 5 nm slit width; T = 10°C). Buffer: 20 mM sodium cacodylate, 100 mM NaCl (pH 7.2). A) **DFA**-oligomer, excitation 348 nm; B) **DCA**-oligomer, excitation 352 nm; C) **DMA**-oligomer, excitation 352 nm; D) **TMA**-oligomer, excitation 355 nm; E) **Hoechst 33342**-oligomer, excitation 350 nm.

Fig. S10 Fluorescence-detected binding of oligomer-3 i.e.; $d(GAAAATTTTC)_2$ with ligands. Small aliquots (1-30 µL) of DNA (1 µM) were added to a solution of ligand (1ml of a 1µM solution) before fluorescence analysis (emission scanning from 400 to 650 at 2 nm/s; 5 nm slit width; T = 10°C). Buffer: 20 mM sodium cacodylate, 100 mM NaCl (pH 7.2). A) **DFA**-oligomer, excitation 348 nm; B) **DCA**-oligomer, excitation 352 nm; C) **DMA**-oligomer, excitation 352 nm; D) **TMA**-oligomer, excitation 355 nm; E) **Hoechst 33342**-oligomer, excitation 350 nm.

Fig. S11 Fluorescence-detected binding of oligomer-4 i.e.; $d(GTTTTAAAAAC)_2$ with ligands. Small aliquots (1-30 µL) of DNA (0.1 mM) were added to a solution of ligand (1ml of a 1µM solution) before fluorescence analysis (emission scanning from 380 to 650 at 2 nm/s; 5 nm slit width; T = 10°C). Buffer: 20 mM sodium cacodylate, 100 mM NaCl (pH 7.2). A)**DFA**-oligomer, excitation 349 nm; B) **DCA**-oligomer, excitation 352nm. C) **DMA**-oligomer, excitation 350; D) **TMA**-oligomer, excitation 353 nm; E) **Hoechst 33342**-oligomer, excitation 350 nm.

Fig. S12 Fluorescence-detected binding of oligomer-1 i.e.; d(GCGCGCGCGCGCGCGCGCGC)₂ with ligands. Small aliquots (1-20 μ L) of DNA (0.1 mM) were added to a solution of ligand (1ml of a 1 μ M solution) before fluorescence analysis (emission scanning from 380 to 650 at 2 nm/s; 5 nm slit width; T = 10°C). Buffer: 20 mM sodium cacodylate, 100 mM NaCl (pH 7.2). A) **DFA**-

oligomer, excitation 349 nm; B) **DCA**-oligomer, excitation 341; C) **DMA**-oligomer, excitation 341nm; D) **TMA**-oligomer, excitation 341nm; E) **Hoechst 33342**-oligomer, excitation 350nm.

Fig. S13: MD-Simulation Protocol

Fig. S14: Ligand-Docked structure of Hoechst-33342 with (i) d(ATATATATATATATAT)₂,(ii) d(GAAAATTTC)₂ and (iii) d(GTTTTAAAAC)₂

iii

Fig. S15: Ligand-Docked structure of DMA with (i) d(ATATATATATATATAT)₂,(ii) d(GAAAATTTTC)₂ and (iii) d(GTTTTAAAAC)₂

iii

Fig. S16: Ligand-Docked structure of TMA with (i) d(ATATATATATATATATAT)₂,(ii) d(GAAAATTTC)₂ and (iii) d(GTTTTAAAAC)₂

Fig. S17: Ligand-Docked structure of DFA with (i) d(ATATATATATATATAT)₂,(ii) d(GAAAATTTC)₂ and (iii) d(GTTTTAAAAC)₂

Fig.-S18: RMSD plots of Free-DNA duplexes up to 25ns simulation. $:d(GAAAATTTTC)_2$ (red), $d(GTTTTAAAAC)_2$ (green) and $d(ATATATATATATATATAT)_2$ (black).

Fig. S19: Correlation diagram of Experimental and Calculated Binding Free Energy profiles after 5, 10, 15 and 20ns simulation.

Fig. S20: Correlation diagram of Experimental and Calculated ΔT_m profiles after 5, 10, 15 and 20ns simulation.