Table S1. List of initial concentration of pool values taken in simulation of comprehensive network

 of eNOS activation pathway.

S.NO	Molecular Species	Concentration (µM)
1	G protein	1 ^[1]
2	Adenylyl Cyclase	0.015 ^[1]
3	РКА	0.5 ^[1]
4	АТР	5000 [1]
5	eNOS	1 [2]
6	PI3-kinase	0.1 ^[3]
7	PIP2	7 ^[3]
8	PTEN	0.27 ^[3]
9	Akt	0.2 ^[4]
10	PDK	1 ^[4]
11	PIP3-PDK2	0.003 ^[4]
12	PP2A	0.15 ^[4]
13	VEGF	2e-06 ^[5]
14	VEGFR2	0.0024 ^[6]
15	ΡLCγ	0.82 ^[7]
16	ΡLCβ	0.8 ^[7]
17	РКС	1 ^[7]
18	Calcium	0.08 ^[8]
19	Ca_Sequester	6.3 ^[1]
20	IP3R	0.0166 ^[1]
21	Calmodulin	20 ^[7]
22	L-Arginine	100 [9]

Table S2. List of kinetic parameters and biochemical reactions considered in shear and VEGFinduced eNOS activation.

S.NO	Specification	Binding Reaction	$k_{f} (\mu M^{-1} s^{-1})$	k _b (s ⁻¹)
1	Activate_Gs	$\begin{array}{c} GDP-\alpha\beta\gamma \rightarrow GTP.Gs-\alpha + Gs-\\ \beta\gamma \end{array}$	0.004*	0
2	Trimerise_Gs	$GTP.Gs-\alpha \rightarrow GDP.Gs-\alpha$	1.25e-06 ^[1]	0 ^[1]
3	GTPase	$GDP.Gs-\alpha \rightarrow GDP-\alpha\beta\gamma$	0.25 ^[1]	0 ^[1]
4	GTP.Gs-bind-AC	$GTP.Gs-\alpha + AC \leftrightarrow GTP.Gs-$ $\alpha - AC$	4.8e-07*	1*
5	PKA-activation	cAMP + Inactive- PKA↔PKA-Active	7.5e-08 [*]	10*
6	eNOS1- phosphorylation	PKA-Active ↔eNOS-Po4	4.24e-07*	8*
7	PI3K-bind-Gs-by	Gs-βγ+PI3K↔ Gs-βγ-PI3K	9.9e-08 [*]	2.5*
8	Activated-PI3K	Gs-βγ-PI3K↔PI3K-Active	0.039*	0.01*
9	PDK1Translocation	PIP3+PDK1 ↔ PIP3-PDK1	7.8e-08 ^[4]	1 ^[4]
10	PIP3bindAKT	PIP3+Akt ↔ PIP3-Akt	7.8e-08 ^[4]	0.19 ^[4]
11	VEGF binding VEGFR2	VEGF+VEGFR-2↔ VEGF- VEGFR2	4.98e-05 ^[10,11]	0.51 ^[10,11]
12	Dimerization	VEGF-VEGFR2↔ VEGFR2-dimer	0.166 ^[12,13]	0.036 ^[12,13]

13	Autophosphorylation	VEGFR2-dimer↔ VEGFR-	0.38 ^[14]	0.23 ^[14]
		PO4		
14	Internalization	VEGFR-PO4 →Internalized	2.8e-15 ^[15]	0
15	PI3K-Binding-	VEGFR-	9.6e-08 [*]	0.089*
	VEGFR-PO4	PO4+PI3K_inactive ↔		
		PISK- VEGFR-PO4		
16	Activates_PI3K	PI3K- VEGFR-PO4↔ PI3K-	0.014*	0.004^{*}
		Active		
17	PLC _Y _Activation	Inactive_PLC γ + VEGFR-	9.79e-08 [*]	1.55*
		$PO4 \leftrightarrow PLC\gamma_Active$		
18	IP3-binding-IP3R	IP3+IP3+IP3+IP3R↔ IP3-	3.08e-23 ^[1]	0.87 ^[1]
		IP3R_chan		
19	PKC-act-Ca	Ca_cytosol+PKC↔ PKC_Ca	6.039e-10 ^[1]	5 ^[1]
20	NKC (DAC		2.57.07[]]	
20	PKC-act-DAG	PKC_Ca+DAG ↔PKC_Ca_DAG	3.5/e-0/	/.6/**
21	PKC_Active	PKC_Ca_DAG ↔	2.4	0.0034
22	PKC-bind-eNOS	PKC_Active +eNOS-Thr	6.82e-08 [*]	0.49^{*}
		497-F04		
23	DAG-Degradation	DAG→ dag_degraded	$0.015^{[7*]}$	0
24	IP3-degradation	IP3→ IP3_degraded	0.0318 [7*]	0
25	Ca-bind-CaM	Ca_cvtosol+CaM⇔Ca-CaM	6.43e-10 ^[1*]	8.2 ^[1*]
				1141
26	Ca-CaM-bind-eNOS	Ca-CaM+eNOS-ca-CaM↔	$4.58e-07^{[10]}$	0.18[10]
		enus ca-cain Active		(7)
27	Ca-bind- Inactive_	Ca_cytosol+ Inactive_	$7.24e-08^{[7]}$	15 ^[7]
	ΓLUγ	rluγ⇔rluγ_ua		
28	Ca-bind- Active_	Ca_cytosol+ Active_	$1.08e-08^{[7]}$	15 ^[7]

	ΡLCγ	$PLC\gamma \leftrightarrow PLC\gamma_Ca_Active$		
29	PLCγ_Ca_Active- dephosphorylation	PLCγ_Ca_Active→ PLCγ_Ca	5e-06 ^[7]	0
30	Activate_Gq	$GDP-\alpha\beta\gamma \rightarrow Gq-\alpha + Gq-\beta\gamma$	0.0005*	0
31	Trimerise_Gq	$Gq-\alpha \rightarrow GDP.Gq-\alpha$	3.62e-07*	0
32	GTPase_q	GDP.Gq-α → GDP-αβγ	0.24*	0
33	Gq- α binds PLC_ β	$Gq-\alpha+PLC_\beta_Inactive \leftrightarrow$ $PLC_\beta-Active$	9.79e-08 ^[17*]	1.55 ^[17*]
34	eNOS binds L-Arg	eNOS ^{conserved} + L-arg ↔ Nitic Oxide + L-citrulline	3.84e-07 ^[18]	9.8e-06 ^[18]
35	Ca_release	IP3IP3R_chan+Ca_sequester ↔ Ca_cytosol	gmax 0.1 ^[1]	Perm 19 ^[1]

Table S3. List of enzyme kinetic parameters involved in the eNOS signalling cascade

S.No	Specification	Enzymatic Reaction	$K_{m}\left(\mu M\right)$	$\mathbf{k}_{cat}(\mathbf{s}^{-1})$
1	GTP.Gs-a-bind-AC-Cyclase	$GTP.Gs-\alpha - AC + ATP \leftrightarrow$ GTP.Gs-\alpha - AC - ATP \rightarrow cAMP	20*	18*
2	Activated PI3k kinases	Active-PI3Kinase+PIP2↔PI3K- PIP2→PIP3	38 ^[1]	10 ^[1]
3	PTEN Phosphatase	PIP3+PTEN↔PIP3-PTEN→PIP2	0.8 ^[1]	6.2 ^[1]
4	PIP3-PDK1 phospho-T308	PIP3-AKT+PIP3- PDK1↔PIP3AKT- PIP3PDK1→PIP3-Akt-T308	0.023 ^[4]	5.8 ^[4]
5	PIP3-PDK2 phospho-S473	PIP3-Akt-T308+PIP3- PDK2↔PIP3AktT308- PIP3PDK2→PIP3-Akt-S473	0.99 ^[4]	9.7 ^[4]
6	PP2A Dephospho-T308	PIP3-Akt- S473+PP2A↔PIP3AktS473- PP2A→ PIP3-Akt-T308	0.26 ^[4]	1.2 ^[4]
7	PP2A Dephospho-S473	PIP3-Akt-T308+PP2A↔ PIP3AktT308-PP2A→PIP3-AKT	220 ^[4]	19.2 ^[4]
8	PIP3-AKT-T308-S473-eNOS- phospho	PIP3-Akt-S473+eNOS1↔ PIP3- Akt-S473-eNOS1→eNOS2-po4	0.1*	0.1*
9	PLCγ_hydrolysis	PLCγ_Active+PIP2↔ PLCγ- PIP2→DAG+IP3	9.9 ^[7*]	10 ^[7*]
10	Inactive_PLC ₇ _Ca_hydrolysis	$PLC\gamma_Ca + PIP2↔ PLC\gamma-Ca-$ PIP2→DAG+IP3	97 ^[7*]	14 ^[7*]
11	Active_PLCγ_Ca_hydrolysis	PLCγ_Ca_Active+PIP2↔ PLCγ- Ca-Active_PIP2→DAG+IP3	19 ^[7*]	57 ^[7*]

12	PLC_β-hydrolysis	PLC_β -Active+PIP2 \leftrightarrow PLC_ β -	98 ^[16*]	5 ^[16*]
		PIP2→DAG+IP3		

Kinetic parameters taken from indicated references are optimized and adapted to the present simulation conditions, hence may slightly vary from the

literature value. Parameters indicated in [*] are results of fitting under the model as described in Materials and Methods.

References

- S. Sivakumaran, S. Hariharaputran, J. Mishra and U. S. Bhalla, The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks, *Bioinformatics.*, 2003, **19**, 408-15.
- B. Roy and J. Garthwaite, Nitric oxide activation of guanylyl cyclase in cells revisited, *Proc Natl Acad Sci USA.*, 2006, **103**, 12185-90.
- G. Koh, H. F. C. Teong, M. V. Clément, D. Hsu and P. S. Thiagarajan, A decompositional approach to parameter estimation in pathway modeling: a case study of the Akt and MAPK pathways and their crosstalk, *Bioinformatics.*, 2006, 22, 271-280.
- 4. P. Jain and U. S. Bhalla, Signaling logic of activity-triggered dendritic protein synthesis: an mTOR gate but not a feedback switch, *PLoS Comput Biol.*, 2009, **5**, e1000287.
- N. Ferrara and T. Davis-Smyth, The Biology of Vascular Endothelial Growth Factor, *Endocrine Reviews.*, 1997, 18, 4-25.
- 6. F. Mac Gabhann and A.S. Popel, Dimerization of VEGF receptors and implications for signal transduction: a computational study, *Biophys Chem.*, 2007, **128**, 125-39.
- X.N. Wei, B.C. Han, J.X. Zhang, X.H. Liu, C.Y. Tan, Y.Y. Jiang, B.C. Low, B. Tidor and Y.Z. Chen, An integrated mathematical model of thrombin-, histamine-and VEGF-mediated signalling in endothelial permeability, *BMC Syst Biol.*, 2011, 5, 112.

- N.S. Dawson, D.C. Zawieja, M.H. Wu and H.J. Granger, Signaling pathways mediating VEGF165-induced calcium transients and membrane depolarization in human endothelial cells, *FASEB J.*, 2006, 20, 991-3.
- S. Shin, S. Mohan and H.L. Fung, Intracellular L-arginine concentration does not determine NO production in endothelial cells: implications on the "L-arginine paradox", *Biochem Biophys Res Commun.*, 2011, 414, 660-3.
- 10. F. Mac Gabhann, M. T. Yang and A. S. Popel, Monte Carlo simulations of VEGF binding to cell surface receptors in vitro, *Biochim Biophys Acta.*, 2005, **1746**, 95-107.
- 11. F. Mac Gabhann and A. S. Popel, Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle, *Am J Physiol Heart Circ Physiol.*, 2004, **286**, H153-64.
- 12. F. Mac Gabhann and A. S. Popel, Targeting neuropilin-1 to inhibit VEGF signaling in cancer: Comparison of therapeutic approaches, *PLoS Comput Biol.*, 2006, **12**, e180.
- 13. F.T. Wu, M.O. Stefanini, F. Mac Gabhann and A.S. Popel, A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap, *PLoS One.*, 2009, 4, e5108.
- 14. F. Mac Gabhann and A.S. Popel, Differential binding of VEGF isoforms to VEGF receptor 2 in the presence of neuropilin-1: a computational model, *Am J Physiol Heart Circ Physiol.*, 2005, 288, H2851-60.

- 15. F.T. Wu, M.O. Stefanini, F. Mac Gabhann and A.S. Popel, Modeling of growth factorreceptor systems from molecular-level protein interaction networks to whole-body compartment models, *Methods Enzymol.*, 2009, **467**, 461-97.
- 16. T.J. Lukas, A signal transduction pathway model prototype I: From agonist to cellular endpoint, *Biophys J.*, 2004, **87**, 1406-16.
- 17. E. Leclerc, C. Corti, H. Schmid, S. Vetter, P. James and E. Carafoli, Serine/threonine phosphorylation of calmodulin modulates its interaction with the binding domains of target enzymes, *Biochem J.*, 1999, **344**, 403-11.
- 18. K. Chen and A.S. Popel, Theoretical analysis of biochemical pathways of nitric oxide release from vascular endothelial cells, *Free Radic Biol Med.*, 2006, **41**, 668-80.