Supplementary materials:

Site Selectivity for Protein Tyrosine Nitration: Insights from Features of Structure and Topological Network

ShangLi Cheng^a, Baofeng Lian^{a,b}, Juan Liang^a, Ting Shi^a, Lu Xie*^b, Yi-Lei Zhao*^{a,b}

a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and MOE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240, China. Fax: +86-21-34207190; Tel: +86-21-34207190; E-mail: yileizhao@sjtu.edu.cn

b Shanghai Center for Bioinformation Technology, Shanghai 201203, China. Fax: +86-21-20283705; Tel: +86-21-20283705; E-mail: xielu@scbit.org

Supplementary Tables

Supplementary Table S1 The nitrated proteins and their structural information used in the predictive model as training data (From reference of GPS-YNO₂).

Supplementary Table S2 The nitrated proteins and their structural information used as independent testing data.

Supplementary Table S3 The identity and positivity of the nitrated protein in BLAST by Discovery Studio 3.1.

Supplementary Table S4 All the structural features extracted from local protein structure.

Supplementary Table S5 The results of Mann-Whitney Test for AAPs.

Supplementary Table S6 The results of Mann-Whitney Test for AATs.

Supplementary Table S7 The results of Mann-Whitney Test of structural features.

Supplementary Table S8 The nine clusters in predictive model using MDD method.

Supplementary Table S9 The evaluation results of each cluster in predictive model using MDD method.

Supplementary Table S10 The evaluation results of each cluster only using sequence features in the predictive model using modified MDD method.

Figure S1. The hydrophobic/hydrophilic environment at the nitrated tyrosine.

Supplementary Table S1 The nitrated proteins and their structural information used in the predictive model as training data (From reference of GPS-YNO₂).

Protein and nitrated site	Protein structure and nitrated site	Experiment	Disease
B2RSH2_167	2ZJY_A_167	In vitro	-
O08553_182	2GSE_A_182	In vitro	-
O08553_431	2GSE_A_431	In vitro	-
$014/3/_/3$ 025642.574	2CRU_A_/2 1W62_P_574	In vivo/vitro	Nourodogonorativo digoso
033043_374	1 w 05_B_5/4 1 X 6 V B 537	In vitro	Incurodegenerative disease
043719_327	2DIT A 79	In vitro	Jurkat lysate
O43765 195	2VYI Ā 195	In vitro	Jurkat lysate
O54922_409	2PFT_A_409	In vivo	Diabetic retinopathy
O60256_52	2JI4_A_52	In vitro	Jurkat lysate
O60506_373	2DGU_A_373	In vitro	Jurkat lysate
0/5390_185	4CIS_A_158	In vitro	Jurkat lysate
075390_343	4C15_A_516 2NUP_C_33	In vitro	- Jurkat lysate
075792 172	3PUF A 172	In vitro	Jurkat lysate
075832 138	1UOH A 138	In vitro	Jurkat lysate
P00004_49	$2PC\overline{B}_{B}_{48}$	In vitro	-
P00004_68	2PCB_B_67	In vitro	-
P00004_75	2PCB_B_74	In vitro	-
P00004_98	2PCB_B_9/	In vitro	-
P00183_180 P00183_202	1GEK_A_179	In vitro	-
P00183_204	1GEK_A 203	In vitro	-
P00183 306	1GEK A 305	In vitro	-
P00183_97	1GEK_Ā_96	In vitro	-
P00257_140	1L6V_A_82	In vitro	
P00338_239	1I10_A_238	In vitro	Jurkat lysate
P00338_83	1110_A_82 2MW0_A_262	In vitro	Jurkat lysate
P00366_319 P00366_458	3MW9_A_202 3MW9_A_401	In vitro	
P00366_464	3MW9 A 407	In vitro	-
P00366 528	3MW9 ⁻ A ⁻ 471	In vitro	-
P00366_550	3MW9_A_493	In vitro	-
P00390_150	2AAQ_A_106	In vitro	-
P00390_158	2AAQ_A_114	In vitro	-
P00442_109	ICOB_A_108	In vitro	-
P00489_162 P00489_186	2PYD_A_101 2PVD_A_185	In vitro	-
P00489_204	2PYD A 203	In vitro	-
P00489 227	2PYD A 226	In vitro	-
P00489_234	2PYD_A_233	In vitro	-
P00489_281	2PYD_A_280	In vitro	-
P00489_298	2PYD_A_297	In vitro	-
P00489_405 P00489_473	2PYD_A_404 2PVD_A_472	In vitro	-
P00489_475 P00489_512	2PTD_A_4/2 2PVD_A_511	In vitro	-
P00489 525	2PYD A 524	In vitro	-
P00489_549	2PYD_A_548	In vitro	-
P00489_554	2PYD_A_553	In vitro	-
P00489_614	2PYD_A_613	In vitro	-
P00489_649	2PYD_A_648	In vitro	-
P00489_727 P00489_75	2PYD_A_/20 2PVD_A_74	In vitro	-
P00489_76	2PYD A 75	In vitro	-
P00489 778	2PYD A 777	In vitro	-
P00489_781	2PYD_A_780	In vitro	-
P00489_792	2PYD_A_791	In vitro	-
P00489_821	2PYD_A_820	In vitro	-
P00489_84	2PYD_A_83 2PVD_A_84	In vitro	-
P00489_85 P00489_91	2FTD_A_64 2PVD_A_90	In vitro	-
P00558 161	2ZGV A 160	In vitro	-
P00558 196	2ZGV A 195	In vitro	Jurkat cells
P00558_76	$2ZGV\overline{A}_{75}$	In vitro	Jurkat cells
P00564_14	2CRK_A_14	In vivo	-
P00564_20	2CRK_A_20	In vivo	-
P00564_39 P00502_145	2CRK_A_39	In vivo	-
P00592_145	1HN4_A_123 1HN4_A_60	In vitro	-
P00644 197	2EXZ A 115	In vitro	-
P00698_38	3B6L Ā 2020	In vitro	-
P00698_41	3B6L_A_2023	In vitro	-
P00698_71	3B6L_A_2053	In vitro	-
P00709_122	1HML_A_103	In vitro	-
P00/09_3/	IHML_A_18	in vitro	-

P00730_308	1PYT_B_198	In vitro
P00730 358	1PYT B 248	In vitro
P00749 44	$2I9\overline{A}$ \overline{A} 24	In vitro
P00766_146	2CGA A 146	In vitro
D00766_171	2CCA_A_171	In vitro
P00/00_1/1	2CGA_A_1/1	III VILIO
P00/81_103	1BH6_A_104	In vitro
P00781_205	1BH6_A_206	In vitro
P00781 208	1BH6 A 209	In vitro
P00781_21	$1BH\overline{6} \ \overline{A} \ 21$	In vitro
P00781_213	1BH6 A 214	In vitro
D00701_215	1DHC A 220	
P00/81_23/	1BH6_A_238	In vitro
P00781_261	1BH6_A_262	ln vitro
P00781 262	1BH6 A 263	In vitro
P00781 56	$1BH\overline{6} \overline{A} 57$	In vitro
P00781_90	1BH6_A_91	In vitro
P00784_194		In vitro
P00704_194		
P00/84_236	1KHP_A_103	In vitro
P00784_249	1KHP_A_116	In vitro
P00807 96	10ME A 105	In vitro
P00883 204	1ZAH_A_203	In vivo
P00883_223	17AH A 222	In vitro
D00882 244	17 11 1 242	In vitro
P00865_244	1ZAII_A_243	
P00883_328	IZAH_A_32/	In vivo
P00883_343	1ZAH_A_342	In vitro
P00924_191	1EBG_A_190	In vitro
P00924 259	1EBG A 258	In vitro
P01006_106	28IC I 75	In vitro
P01000_162	2010 - 1.75 2010 - 1.75	In vitro
P01009_102	SNE4_A_138	
P01009_184	3NE4_A_160	In vitro
P01009_211	3NE4_A_187	In vitro
P01009 268	3NE4 A 244	In vitro
P01009_321	3NE4 A 297	In vitro
P01009_62	3NF4 A 38	In vitro
D01007_02	2A72 D 664	In vitro
P01024_080	2A/5_B_004	III VILLO
P01024_/30	2A/3_B_/08	In vitro
P01031_700	3PRX_A_700	In vitro
P01050 3	1HRT I 3	In vitro
P01050_63	1HRT \overline{I} $\overline{6}3$	In vitro
P01112_137	$4021 \text{ A} \overline{137}$	In vitro
P01112_157	4021 A 157	In vitro
D01112_10	4021 4 40	In vitro
P01112_40	4Q21_A_40	
P01112_96	4Q21_A_96	In vitro
P01180_80	INPO_A_49	In vitro
P01426_24	11Q9_A_24	In vitro
P01654_90	1H0D_A_85	In vivo
P01857 161	1HZH H 291	In vitro
P01857 202	1HZH H 338	In vitro
P01870_154	$2VUO^{-}A^{-}278$	In vitro
P02185_147	3A2G_A_146	In vitro
P02185_152	3A2G A 151	In vitro
D02244_10	147 1 18	In vitro
102244_19	1141_A_18	
P02244_68	114 Y_A_6/	In vitro
P02244_71	1I4Y_A_70	In vitro
P02564 134	4DB1 A 134	In vivo
P02564 142	4DB1 A 142	In vivo
P02647_260	2A01 A 236	In vitro
P02647_42	2401 1 19	In vitro
P02047_42	2A01_A_18	
P0264/_53	2A01_A_29	In vitro
P02675_322	3GHG_B_292	In vivo
P02675_452	3GHG_B_422	In vivo
P02703 72	$1PCO \overline{A} 55$	In vitro
P02703_75	$1PCO_A_58$	In vitro
P02703_76	1PCO_A_50	In vitro
P02705_70	1FCO_A_39	
P02754_115	3PH5_A_115	In vitro
P02769_108	3V03_A_84	In vitro
P02769_161	3V03_A_137	In vitro
P02769_163	3V03 A 139	In vitro
P02769171	3V03 A 147	In vitro
P02769 173	3V03 A 140	In vitro
D02760 170	$3 \times 03_{147}$	In vitto
ru2/09_1/9	3 VUS_A_155	in vitro
P02/09_180	3 VU3_A_156	in vitro
P02/69_184	3V03_A_160	In vitro
P02769_286	3V03_A_262	In vitro
P02769 342	3V03 A 318	In vitro
P02769_355	3V03 A 331	In vitro
P02769_357	31/03 4 323	In vitro
P02760 364	J + 0J A JJJ	
104/07 JUH	31/03 1 340	In witro
P02760 376	$3V03^{-}A^{-}340$	In vitro
P02769_376	3V03_A_340 3V03_A_352	In vitro In vitro
P02769_376 P02769_393 P02769_444	3V03_A_340 3V03_A_352 3V03_A_369	In vitro In vitro In vitro

---_ Atherosclerotic lesions ------Prothrombotic Prothrombotic --

--

P02769 434	3V03 A 410	In vitro
P02769 475	3V03 A 451	In vitro
P02769_520	3V03 A 496	In vitro
P02769_54	3V03 A 30	In vitro
P02945_144	1M0K A 131	In vitro
P02945_146	1M0K_A_133	In vitro
P02945_77	1M0K_A 64	In vitro
P02040_26	1COP D 26	In vite
P03040_20	1COP_D_20	III VILIC
P03040_51		In vitro
P04177_425	1TOH_A_423	In vitro
P041//_428	110H_A_428	In vitro
P04177_432	110H_A_432	In vitro
P04179_217	1N0J_A_193	In vitro
P04179_58	1N0J_A_34	In vitro
P04179_69	1N0J_A_45	In vitro
P04806_340	3B8A_X_340	In vitro
P04806_346	3B8A_X_346	In vitro
P05064_174	4ALD_A_173	In vitro
P05181_318	3E4E_A_318	In vitro
P05181 381	3E4E A 381	In vitro
P05181 423	3E4E A 423	In vitro
P05181 71	$3E4\overline{E} \overline{A} 71$	In vitro
P05202 316	3PD6 Ā 316	In vitro
P05202_67	$3PD\overline{6} \ \overline{A} \ 67$	In vivo
P05202_96	3PD6_A_96	In vitro
P05230_109	1RY7 A 109	In vitro
P05230_112	1RY7 A 112	In vitro
P05230_140	1RY7 = 140	In vitro
P05230_30	1RV7 = 30	In vitro
P05230_70	$1R17_A_{50}$	In vitro
P05070 255	20VE B 255	In vitro
P05070 285	201E_F_555 20VE_B_285	In vitro
P05070 417	201E_F_365	In vite
P05979_417	$204E_{P_{417}}$	
P06576_230	2W6E_D_180	
P06576_247	2W6E_D_197	In vitro
P06576_269	2W6E_D_219	In vitro
P065/6_331	2W6E_D_281	In vitro
P06576_395	2W6E_D_345	In vitro
P06576_418	2W6E_D_368	In vitro
P06576_508	2W6E_D_458	In vitro
P06748_67	2P1B_A_67	In vitro
P06968_92	1DUP_A_93	In vitro
P07195_240	1I0Z_A_239	In vitro
P07195_84	1I0Z_A_83	In vitro
P07311_92	2VH7_A_91	In vitro
P07339_232	1LYA_B_168	In vitro
P07355_30	1W7B_A_30	In vitro
P07515 37	1PTF A 37	In vitro
P07737 129	1CJF A 128	In vitro
P07737_60	$1CJF \overline{A} 59$	In vitro
P07900 ¹ 97	$2FWY \overline{A} \overline{1}97$	In vitro
P07900_216	2FWY_A_216	In vitro
P07900_313	306M A 313	In vitro
P07954_54	3E04 A 54	In vitro
P07999_160	1GCO A 158	In vitro
P07999_254	1GCO_A_253	In vitro
P08011_93	2H8A A 92	In vitro
P08133_218	1M9L A 218	In vitro
P08670 276	3TRT A 276	In vitro
P08877 29	1KKL H 29	In vitro
P08877_37	1KKL H 37	In vitro
P09211_50	12GS A 49	In vitro
P00227_167	2DDV A 72	In vitro
P09237_107 P00420_78	2DD1_A_/3 2VPO_A_85	In vitro
P09429_78	21 KQ_A_83	III VILIC
P09955_197	3GLJ_A_90	In vitro
P09955_306	3GLJ_A_198	In vitro
PU9955_348	3GLJ_A_240	In vitro
P09955_356	3GLJ_A_248	In vitro
P09955_367	3GLJ_A_259	In vitro
P09955_385	3GLJ_A_277	In vitro
P0A0E3_37	1KA5_A_37	In vitro
P0A6A8_72	3EJB_A_91	In vitro
P0A786_241	1EKX_A_240	In vitro
P0A9C5_101	2GLS_A_100	In vitro
P0A9C5_115	2GLS_A_114	In vitro
P0A9C5_180	2GLS_A_179	In vitro
P0A9C5_288	2GLS_A_287	In vitro
P0A9C5_297	2GLS A 296	In vitro
P0A9C5_327	2GLS_A_326	In vitro
P0A9C5_335	2GLS A 334	In vitro
-		

	-
	-
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
Neurodegenerative disea	ase
	-
	-
	-
	-
	-
	-
	-
Familial amyotrophic lateral sclero	- sis
5 1	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	2
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

P0A9C5_398	2GLS_A_397	In vitro
P0AGD3_35	1ISA_A_34	In vitro
P0C7M2_128	1L3K_A_128	In vitro
P0C/M2_16/	$1L_{3}K_{A_{10}}$	In vitro
P10145_40 P10152_60	11L8_A_13 1V2A_A_22	In vitro
P10155_00 P10276_208	3A0E B 208	In vitro
P10276_208	3A9E B 277	In vitro
P10276_362	3A9E B 362	In vitro
P10768 202	3FCX A 202	In vitro
P11142 115	3C7N B 115	In vitro
P11142_134	3C7N B 134	In vitro
P11142_149	3C7N B 149	In vitro
P11142_183	3C7N_B_183	In vitro
P11142_41	3C7N_B_41	In vitro
P11413_401	1QKI_A_401	In vitro
P11586_258	1DIA_A_258	In vitro
P11586_52	1DIA_A_52	In vitro
P12004_60	IAXC_A_60	In vitro
P12/24_60	IQMI_A_33	In vitro
P12/58_169 P12010_205	1K3F_A_169	In vitro
P13332 226	IJEQ_D_293	In vitro
P13332_220	3FOA A 255	In vitro
P13332_271	3FOA_A_271	In vitro
P13332 305	3FOA A 305	In vitro
P13332 456	3FOA A 456	In vitro
P13332 461	3FOA A 461	In vitro
P13332_64	$3FO\overline{A}_{\overline{A}}_{\overline{A}}_{\overline{64}}$	In vitro
P13332_74	3FOA_A_74	In vitro
P13929_131	2XSX_A_131	In vitro
P13929_189	2XSX_A_189	In vitro
P13929_200	2XSX_A_200	In vitro
P13929_252	2XSX_A_252	In vitro
P13929_257	2XSX_A_257	In vitro
P13929_280 P12020_287	2XSX_A_280	In vitro
P13929_28/ P13929_407	2XSX_A_28/ 2XSX_A_407	In vitro
P13929_407 P13020_44	2XSX_A_407	In vitro
P13929_44	2XSX_A_44 2XSX_A_57	In vitro
P14206_139	27KO B 138	In vivo
P14618 105	3GOY A 105	In vitro
P14618 148	3GOY A 148	In vitro
P14649 86	10E9 B 29	In vitro
P14779_335	3M4V_Ā_334	In vitro
P14902_15	$2D0\overline{T}_{A}_{15}$	In vitro
P14902_345	2D0T_A_345	In vitro
P14902_353	2D0T_A_353	In vitro
P16276_151	1B0J_A_124	In vitro
P16276_472	1B0J_A_445	In vitro
P162/6_/1	1B0J_A_44	In vitro
P10284_/13 D17192_252	2KY5_A_080	In vitro
P17183_232 P17183_270	$11E0_A_{231}$	In vitro
P17183_44	1TE6 A 43	In vitro
P18669 142	1YFK A 142	In vitro
P18669 50	$1YFK \overline{A} 50$	In vivo
P18669 92	1YFK_A_92	In vitro
P18872_69	3C7K_A_69	In vitro
P19338_351	2KRR_A_52	In vitro
P19338_525	2FC9_A_55	In vitro
P19652_109	3APU_A_91	In vitro
P19652_133	3APU_A_115	In vitro
P19652_145	3APU_A_127	In vitro
P19652_175	3APU_A_157	In vitro
P19652_45	$3APU_A_2/$	In vitro
P19032_33 P19652_68	SAPU_A_S/	In vitro
P19652_08	3APU = 78	In vitro
P19784_13	30FM A 13	In vitro
P20618 158	1IRU M 130	In vitro
P20700 482	2KPW A 55	In vitro
P20813_111	3IBD Ā 111	In vitro
P20813_190	3IBD_A_190	In vitro
P20813_203	3IBD_A_203	In vitro
P20813_235	3IBD_A_235	In vitro
P20813_244	3IBD_A_244	In vitro
P20813_268	31RD A 268	In vitro
P20813_348	3IBD_A_348	In vitro

	-
	-
	-
	-
	_
	_
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	_
	_
	-
	-
	-
Neurodegenerative diseas	e
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	2
	_
	-
Familial amyotrophic lateral sclerosi	s
	-
	-
	-
	-
	-
	-
	-
	-
	_
	_
	_
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

P20813_380	3IBD_A_380	In vitro	
P21803 656	2PSO A 656	In vivo	Oxidativ
P22102_417	2014 4 417	In vitro	
D22224 22	20121 - 17	In vitro	
P22234_22	2H31_A_22	in vitro	
P23193_273	1TFI_A_22	In vitro	
P23528 140	108G A 140	In vitro	
P23528_68	108G A 68	In vitro	
125528_08	1Q00_A_00		
P24666_88	5PNT_A_87	In vitro	
P25705 337	2W6E A 294	In vitro	
P25705_440	2W6F_4_397	In vitro	
D25707_220	1001_N_300	III VILLO	
P25/8/_229	$IIKU_B_{228}$	In vivo	
P25963_181	1IKN_D_181	In vitro	
P26038_85	1E5W A 85	In vitro	
P26500 247	1SID A 110	In vitro	
F20399_247	15JK_A_110		
P26599_430	2ADC_A_430	In vitro	
P27361 156	2ZOQ A 156	In vitro	
P27824_70		In vitro	
12/024_/0 D20072_50			
P28072_59	TIRU_H_25	in vitro	
P29372_162	1F4R_A_162	In vitro	
P29474_163	3NOS_A_163	In vitro	
D20474_210	2NOS 1 210	In vitro	
P294/4_210	5NO5_A_210	III VIUO	
P29474_357	3NOS_A_357	In vitro	
P29474 373	3NOS A 373	In vitro	
P20474_410	3NOS 1 410	In vitro	
129474_410 D20474_01	JN05_A_410		
P29474_81	3NOS_A_81	in vitro	
P30086 106	1BD9 A 106	In vitro	
P30086_64	$1BD\overline{9} \ \overline{A} \ 64$	In vitro	
D20101_100	2011 1 100	In vitro	
P30101_100	3F8U_A_100	in vitro	
P30101_67	3F8U_A_67	In vitro	
P30275 116	10K1_A_77	In vitro	
D20275 212	1011 1 274	In vitro	
F30275_313	IQKI_A_2/4		
P31039_142	1ZOY_A_99	In vitro	
P32969 180	2ZKR E 180	In vitro	
P34913 383	1580 A 383	In vivo	
D24012_4((1000_1_303	111 1110	
P34913_466	1580_A_466	In vivo	
P35080_99	2V8C_A_98	In vitro	
P35228 299	1NSI A 299	In vitro	
P35228 336	1NSL A 336	In vitro	
135228_350 Da 5220_116	1NSI_A_330		
P35228_446	INSI_A_446	In vitro	
P35247 248	1PW9 A 228	In vitro	
P35247 326	1PW9_A_306	In vitro	
D25247_224	$10W_{0} = 1200$	In vitro	
P35247_554	IPW9_A_514	III VILLO	
P35441_1126	1UX6_A_1108	In vitro	
P35520 223	1JBO A 223	In vitro	
P36959 318	2BLE A 318	In vitro	
D27027 20(1E05 A 200	In vitro	
P3/83/_200	1F05_A_200	in vitro	
P37840_125	1XQ8_A_125	In vivo	
P37840 133	1X08 A 133	In vivo	
P37840_136	1208 1 136	In vivo	
137840_130 D27840_28	1XQ0_A_130		
P3/840_39	1XQ8_A_39	In vivo	
P39053 125	3ZVR A 125	In vivo	
P39053 265	3ZVR_A_265	In vitro	
P40142 275	2108 1 275	In vitro	
P40142_275	SMOS_A_2/3	III VILLO	
P40926_161	2DFD_A_143	In vitro	
P40926 56	2DFD A 38	In vitro/vivo	
P40926_80	$2DFD_A_62$	In vivo	
D45452 220	1DEV A 222	In vivo	
P45452_556	IPEA_A_332	in viuo	
P46406_312	1J0X_O_311	In vitro	
P46406 318	1J0X O 317	In vitro	
P47813 106	$1D70^{-}A^{-}119$	In vitro	
D51140_20	1701 1 20		
P51149_28	1191_A_28	in vitro	
P53041_434	1WAO_1_434	In vitro	
P53396 213	3PFF A 213	In vitro	
P53396 227	$3 \text{PEE} \Delta 227$	In vitro	
155570_227 D5220(_204	2DEE A 204		
P53396_384	3PFF_A_384	in vitro	
P55072_644	3CF1_A_644	In vitro	
P55769 11	$2JN\overline{B} \overline{A} 11$	In vitro	
D56574 211	11 WD $\overline{1} 272$	In vitro	
150574_511 D(0201_22	1100 - 11		
P00501_32	1102_A_11	in vitro	
P60301_43	1I02_A 22	In vitro	
P60301 ⁷²	$1102^{-}A^{-}51$	In vitro	
P60615_45	111/0 1 24	In rites	
100015_45 DC0C15_75	11K0_A_24		
P00015_/5	11K8_A_54	In vitro	
P60710 169	3BYH A 169	In vitro	
P60710_188	3BYH_A_188	In vitro	
P60710_108	2DVII A 100	In vitto	
r00/10_196	3D1H_A_198	in vitro	
P60710_218	3BYH_A_218	In vivo/vitro	
P60710 240	3BYH A ²⁴⁰	In vitro	
P60710_294	3BYH 4 204	In vivo/vitro	
D60710_207	2DVII A 2/2		
100/10_302	3D1H_A_362	in vitro	

	-
ve injury to t	he refinal pigment epithelium
	-
	-
	-
	-
	-
	-
	-
	-
Hu	man pituitary adenoma tissue
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	- - -
	- - - -
	- Neurodegeneration Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	- Neurodegeneration Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	- Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	- Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	- Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	- Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	- Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	- Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegenerative disease
	Neurodegeneration Neurodegeneration Neurodegenerative disease

P60710 53	3BYH A 53	In vitro	-
P60710_69	3BVH A 69	In vitro	-
P60710_01	2DVU A 01	In vitro	
P(0770_4)	JUCD A 25		-
P60//0_46	1V6P_A_25	In vitro	-
P60770_56	1V6P_A_35	In vitro	-
P60842 197	3EIQ A 197	In vitro	-
P60842_70	3EIO A 70	In vitro	_
P61012_6		In vitro	
P01015_0	IFJK_A_0		-
P61088_/6	3HCT_B_/6	In vitro	-
P61158_16	1K8K_A_16	In vitro	-
P61513 37	$2ZKR^{T}Z^{37}$	In vitro	-
P61823_102	1C0B A 76	In vitro	
D(1922_141	1COD A 115	In vitro	
P01823_141	ICOB_A_IIS	In vitro	-
P61823_99	1C0B_A_73	In vitro	-
P61927 27	2ZKR 2 27	In vitro	-
P62136 255	1FJM \overline{A} 255	In vitro	-
P62158_100	3077 1 368	In vitro	
D(2150_100	2077 A 407		
P02138_139	30//_A_40/	In vitro	-
P62249_115	2ZKQ_I_115	In vitro	-
P62259 131	3UBW A 131	In vivo/vitro	-
P62259_214	$3UBWA^214$	In vitro	-
P62259_85	JUBW A 85	In vivo	Neurodegenerative disease
D(225)_05		In vivo	Neurouegenerative disease
P62259_9	30BW_A_9	In vitro	-
P62263_72	2ZKQ_K_72	In vitro	-
P62273_34	2ZKQ_N_34	In vitro	-
P62750 117	2ZKR S 117	In vitro	-
P62750 144	27KR S 144	In vitro	
102700_{144}	$2 \Sigma K S $ 144	In viuo	
P62805_52	2HUE_C_SI	In vivo/vitro	Mutatect tumor
P62805_73	$2HUE_C_{72}$	In vivo/vitro	Mutatect tumor
P62805 89	2HUE C 88	In vivo/vitro	Mutatect tumor
P62826_147	1A2K C 147	In vitro	-
P62917 133	27KR 4 133	In vitro	
D(2002_200	1CDL A 200	In vitro	
P62993_209	IGRI_A_209	In vitro	-
P63168_50	1F3C_A_50	In vitro	-
P63244_52	2ZKQ_A_52	In vitro	-
P63328 224	1AUI A 224	In vivo	Neurodegenerative disease
P67775 284	$3C5WC^{284}$	In vitro	-
D68600 72	1 ATV = 72	In vitro	
P08099_75	IATI_A_/3		-
P688/1_131	$IDXI_B_{I31}$	In vitro	-
P68871_146	1DXT_B_146	In vitro	-
P69542 26	1GVP A 26	In vitro	-
P69542_41	$1 \text{GVP}^{-} \text{A}^{-} 41$	In vitro	_
D60542_11		In vitro	
P09342_30	10VP_A_30	III VILIO	-
P69687_140	3J06_A_139	In vitro	-
P69905_141	1BZ1_A_141	In vitro	-
P69905 25	1BZ1 A 25	In vitro	-
P69905_43	1BZ1_A_43	In vivo/vitro	_
D60024_122		In vivo, vitro	
P09924_123	1AIK_A_122	III VILIO	-
P69924_290	1XIK_A_289	In vitro	-
P69924_3	2ALX_A_2	In vitro	-
P69924 63	1XIK A 62	In vitro	-
P78417 108	1EEM A 108	In vitro	_
D92721 11	27KB U 11	In vitro	
F65/51_11			-
P84103_32	212Y_A_96	In vitro	-
P97427_290	1KCX_A_290	In vivo	-
Q01130 3	2LEA A 3	In vitro	-
001518_419	1K8F A 419	In vitro	-
002790_202	1072 4 202	In vitro	
002405 114		In vitto	-
Q03405_114 002405_171	11WH_A_92	in vitro	-
Q03405_1/1	1YWH_A_149	In vitro	-
Q03405_217	1YWH_A_195	In vitro	-
Q03405 258	1YWH A 236	In vitro	-
003405 79	1YWH = 57	In vitro	-
004206_152	1NFL & 152	In vitro	-
004200_132			
Q04206_66	INFI_A_00	in vitro	-
Q04447_269	1G0W_A_269	In vivo	Neurodegenerative disease
Q04447_39	1G0W_A 39	In vivo/vitro	Familial amyotrophic lateral sclerosis
Q06547 126	1 AWC = 126	In vitro	· -
006830 ⁻ 194	2798 A 194	In vitro	-
007955 170	$1YAC \wedge 4^{\epsilon}$	In vitto	-
QU/935_1/U	174C_A_05	in vitro	-
Q0/955_37	1X4A_A_44	In vitro	-
Q08211_200	1UIL_A 47	In vitro	-
Q09028 154	3GFC A 154	In vitro	-
012996 159	200E A 159	In vitro	_
013257 100	200L_A_109	In vitte	-
Q13237_177 Q13451_210	2 v 04_A_199		-
Q13451_218	1K10_A_218	In vitro	-
Q13765_120	3MCB_A_120	In vitro	-
Q14683_575	2WD5 A 575	In vitro	-
015019 129	20A5 A 129	In vitro	<u>-</u>
015027 485	3111E A 104	In vive	Human nituitary adapama tissua
Q1302/ 403	JJUE_A_400		riuman phunary adenoma tissue

Q15056_101	2DNG_A_100	In vitro	-
Q15056_86	$2DN\overline{G} \overline{A} 85$	In vitro	-
Q15370 45	1VCB ^A 45	In vitro	-
Q15427 ⁻¹⁶	1X5U ⁻ A ⁻ 19	In vitro	-
Q16539 132	1BL6 \overline{A} $\overline{132}$	In vitro	-
Q16539 ⁻ 258	1BL6_A_258	In vitro	-
Q16595 ¹⁴³	3S4M_A_143	In vitro	-
Q16647_430	3B6H_A_430	In vitro	-
Q16695 42	3A6N A 41	In vivo/vitro	Mutatect tumors
Q3ULF4_505	2QZ4_A_505	In vivo	Neurodegenerative disease
Q5SIY4_36	1GC8_A_1036	In vitro	- ·
Q60468_218	1B10_A_218	In vitro	-
Q61644_437	2X3W_D_437	In vitro	-
Q61656_97	3FE2_A_97	In vivo	Neurodegenerative disease
Q62673_481	1Q4K_B_481	In vivo	Oxidative injury to the retinal pigment epithelium
Q64455_1034	3I36_A_1012	In vivo	Oxidative injury to the retinal pigment epithelium
Q71U36_103	3HKB_A_103	In vitro	-
Q71U36_224	3HKB_A_224	In vivo/vitro	Tubulin nitration in human gliomas
Q71U36_262	3HKB_A_262	In vitro	-
Q71U36_272	3HKB_A_272	In vitro	-
Q71U36_357	3HKB_A_357	In vivo/vitro	-
Q7TMM9_106	3DU7_B_108	In vivo/vitro	-
Q7TMM9_222	3DU7_B_224	In vivo/vitro	-
Q7TMM9_36	3DU7_B_36	In vitro	-
Q7TMM9_51	3DU7_B_53	In vitro	-
Q86VP6_723	4A0C_A_723	In vitro	-
Q8NHL6_122	1VDG_A_99	In vitro	-
Q8NHL6_58	1VDG_A_35	In vitro	-
Q8NHL6_99	1VDG_A_76	In vitro	-
Q8X1D8_398	2C12_A_398	In vitro	-
Q9CQV8_106	2BQ0_A_106	In vivo	Neurodegenerative disease
Q9CQV8_213	2BQ0_A_213	In vitro	-
Q9CQV8_84	2BQ0_A_84	In vivo	Neurodegenerative disease
Q9L422_51	3N5B_A_51	In vitro	-
Q9NPD3_12	2NN6_B_11	In vitro	-
Q9P2J5_336	2WFD_A_336	In vitro	-
Q9QUH6_505	3BXJ_A_490	In vivo	-
Q9QYG0_68	2QMQ_A_68	In vitro	-
Q9UKK9_36	2DSB_A_36	In vitro	-
Q9Y230_430	2XSZ_D_345	In vitro	-

Supplementary Table S2 The nitrated proteins and their structural information used as independent testing data.

Protein and site	Protein structure and site	Reference	Disease
D0VWU3_196	3DIV_A_196	PMID:17012782	-
D0VWU3_372	3DIV A 372	PMID:17012782	-
P01764_99	$2VX\overline{S}_{H}^{-}79$	PMID:20676907	Kidney disease
P02768_108	1AO6_A_84	PMID:12927827	-
P02768_365	1AO6_A_341	PMID:12927827	-
P04637_107	1TSR_A_107	PMID:20499882	-
P04818_135	2RD8_A_135	PMID:22072032	-
P04818_213	2RD8_A_213	PMID:22072032	-
P04818_230	2RD8_A_230	PMID:22072032	-
P04818_258	2RD8_A_258	PMID:22072032	-
P04818_301	2RD8_A_301	PMID:22072032	-
P04818_33	$2RD\overline{8}_{\overline{A}}33$	PMID:22072032	-
P04818_65	2RD8_A_65	PMID:22072032	-
P09936_80	2ETL_A_80	PMID:21706495	-
P11884_150	1CW3_A_131	PMID:14527943	-
P11884_158	1CW3_A_139	PMID:14527943	-
P14780_262	1L6J_A_262	PMID:21766372	-
P17751_118	1R2R_A_67	PMID:16800626	Neurodegenerative disease
P17751_259	1R2R_A_208	PMID:16800626	Neurodegenerative disease
P20029_161	3IUC_A_160	PMID:16800626	Neurodegenerative disease
P25942_82	3QD6_R_82	PMID:21832282	-
P50396_197	1LV0_A_197	PMID:15699043	Familial amyotrophic lateral sclerosis
Q13093_307	3D59_A_307	PMID:17210780	-
Q13093_335	3D59_A_335	PMID:17210780	-
Q14145_345	2DYH_A_345	PMID:21172423	-
Q14145_491	2DYH_A_491	PMID:21172423	-
Q14145_537	2DYH_A_537	PMID:21172423	-
Q62120_1021	4GL9_A_1021	PMID:17510231	Inflammatory response
Q8IWL3_128	3BVO_A_128	doi:10.1016/j.ijms	-
Q99PT1_156	1DOA_B_156	PMID:15699043	Familial amyotrophic lateral sclerosis
Q9Z1P2_241	1SJJ_A_242	PMID:15851474	

Supplementary Table S3 The identity and positivity of the nitrated protein in BLAST by Discovery Studio 3.1.

Protein	Identity	Positivity
B2RSH2	99	99
008553	98	100
035643	98	98
O43252	99	99
O43719	99	99
O43765	100	100
054922	98	99
060256	100	100
075390	96	97
075396	97	97
O75792	100	100
O75832	100	100
P00004	100	100
P00183 P00257	100	100
P00338	100	100
P00366	100	100
P00390	100	100
P00442	100	100
P00489	99	99
P00558	100	100
P00304 P00592	100	98
P00644	99	99
P00698	100	100
P00709	100	100
P00730	100	100
P00749	99	100
P00766 P00781	100	100
P00784	100	100
P00807	100	100
P00883	100	100
P00924	99	100
P01006	100	100
P01009 P01024	100	100
P01024	100	100
P01050	100	100
P01112	100	100
P01180	100	100
P01426	100	100
P01654	96	98
P01857 P01870	99	99
P02185	99	99
P02244	100	100
P02564	95	97
P02647	100	100
P02675	100	100
P02703 P02754	100	100
P02769	99	99
P02945	100	100
P03040	100	100
P04177	100	100
P041/9 P04806	100	100
P05064	97	99
P05181	100	100
P05202	100	100
P05230	100	100
P05979	99	100
P06576 P06748	96	97
P06968	100	100
P07195	100	100
P07311	100	100
P07339	100	100
P07355	99	99
P0737	100	100
P07900	100	100
P07954	100	100
P07999	98	98
P08011	100	100
P08133	99	99

100	100
98 100	98 100
100	100
100	100
100	100
100	100
100	100
97	99
100	100
100	100
100	100
100	100
100	99 100
99	99
100	100
100	100
100	100
100	100
98	99
99	100
100	100
99	100
99 100	99
99	99
98	100
98	99
100	100
100	100
99	99
99 100	99
100	100
99	100
99	99
99	100
100	100
100	100
100	100
100	98
100	100
100	100
100	100
95 95	99
100	100
100	100
100	100
99	99
97 2	99
96 100	98
100	100
99	100
100	100
99 97	99 98
99	100
99	99
100	100
97	99
95	98
99 100	99 100
99	100 99
100	100
99	99
100	100
	$\begin{array}{c} 100\\ 98\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$

P55072	100	100
P55769	100	100
P56574	96	99
P60301	100	100
P60015 P60710	100	100
P60770	100	100
P60842	100	100
P61013	98	98
P61088	100	100
P61158	100	100
P61513	100	100
P61823	100	100
P61927	100	100
P62150 P62158	100	100
P62249	100	100
P62259	99	99
P62263	100	100
P62273	100	100
P62750	100	100
P62805	100	100
P62826	100	100
P6291/ P62003	100	100
P63168	100	100
P63244	100	100
P63328	99	99
P67775	100	100
P68699	98	98
P68871	100	100
P69542	100	100
P69687	100	100
P69905	100	100
P09924 P78417	100	100
P83731	100	100
P84103	100	100
P97427	100	100
Q01130	100	100
Q01518	100	100
Q02790	100	100
Q03405	99	99
Q04206	99	99
Q04447 Q06547	90	100
Q00347 Q06830	96	98
Q07955	100	100
Q08211	97	97
Q09028	100	100
Q12996	99	99
Q13257	100	100
Q13451 Q12765	99	100
Q13703 Q14683	100	100
015019	100	100
Q15027	99	99
Q15056	98	98
Q15370	100	100
Q15427	98	100
Q16539	100	100
Q16595	100	100
Q16695	100	100
O3ULF4	96	98
Q5SIY4	99	99
Q60468	95	99
Q61644	100	100
Q61656	99	100
Q62673	95	98
Q64455	98	98
Q/1U36	100	100
Q7 TWIN9	99	99
O8NHL6	100	100
Q8X1D8	100	100
Q9CQV8	98	99
Q9L422	100	100
Q9NPD3	100	100
0.076		0.0

Q9QUH6	100	100
Q9QYG0	100	100
Q9UKK9	100	100
Q9Y230	97	97

Supplementary Table S4 All the structural features extracted from local protein structure. In the 'X_A', the X means the type of amino acids, and A means the type of atoms. The atoms are categorized into 8 types including carbon of main chain (C), alpha carbon (CA), nitrogen of main chain (N), oxygen of main chain (O), carbon of side chain (C*), nitrogen of side chain (N*), oxygen of side chain (O*) and sulfur of side chain (S*). 'S*' of 148 means the side-chain sulfur from Cys and Met. 'Atoms_8A' means the number of atoms in the distant threshold of 8 angstrom.

No.	Structral features
1	SER_C
2	SER_O
3	SER_N
4	SER_CA
5	SER_C*
6	SER_O*
7	THR_C
8	THR_O
9	THR_N
10	THR_CA
11	THR_C*
12	THR_O*
13	CYS_C
14	CYS_O
15	CYS_N
16	CYS_CA
17	CYS_C*
18	CYS_S*
19	PRO_C
20	PRO_O
21	PRO_N
22	PRO_CA
23	PRO_C*
24	ASN_C
25	ASN_U
20	ASN_N
2/	ASN_CA
20	ASN_C
29	ASN_U [*]
21	GLN C
22	GLN_C
32	GLN_U
24	GLN CA
34	GLN_CA
36	GLN_0*
37	GLN_0 GLN_N*
38	ASP C
39	ASP_O
40	ASP_N
41	ASP CA
42	ASP C*
43	ASP_O*
44	GLŪ C
45	GLUO
46	GLU_N
47	GLU_CA
48	GLU_C*
49	GLU_O*
50	LYS_C
51	LYS_O
52	LYS_N
53	LYS_CA
54	LYS_C*
55	LYS_N*
56	ARG_C
5/	ARG_O
58	ARG_N
59	ARG_CA
6U 61	ARG_C*
62	AKG_N*
02 62	HIS_C
64	HIS_U
04 65	
66	
67	
68	
00	TIL_C

69	PHE O
70	PHE N
71	DHE CA
/1	PHE_CA
72	PHE_C*
73	TYR C
74	TVPO
74	
75	TYR_N
76	TYR CA
77	TVP C*
70	
/8	TYK_O*
79	TRP C
80	TRPO
01	TDD N
01	
82	TRP_CA
83	TRP C*
84	TRP N*
04	
85	GLY_C
86	GLY O
87	GLY N
00	
88	GLY_CA
89	ALA_C
90	ALA O
91	ALA N
02	
92	ALA_CA
93	ALA_C*
94	VAL C
05	VAL O
95	VAL_O
96	VAL_N
97	VAL CA
98	VAL C*
00	
99	LEU_C
100	LEU_O
101	LEU N
102	LEU ĒA
103	LEU C*
103	
104	ILE_C
105	ILE_O
106	ILE N
107	ILE CA
109	
108	
109	MET_C
110	MET O
111	MET N
112	MET CA
112	MET_CA
113	MEI_C*
114	MET_S*
115	All C
116	
117	
11/	All_N
118	All_CA
119	Polar C
120	Polar_O
120	
121	Polar_N
122	Polar_CA
123	Acid C
124	Acid O
125	Acid N
125	Aciu_N
126	Acid_CA
127	Dania C
12/	Dasic_C
127	Basic O
128	Basic_C Basic_O Basic_N
127 128 129	Basic_C Basic_N Basic_CA
129 129 130	Basic_C Basic_N Basic_CA
129 129 130 131	Basic_C Basic_N Basic_CA Aromatic_C
129 129 130 131 132	Basic_C Basic_O Basic_N Basic_CA Aromatic_C Aromatic_O
129 129 130 131 132 133	Basic_C Basic_N Basic_CA Aromatic_C Aromatic_O Aromatic_N
128 129 130 131 132 133 134	Basic_C Basic_N Basic_CA Aromatic_C Aromatic_O Aromatic_N
127 128 129 130 131 132 133 134	Basic_C Basic_O Basic_CA Aromatic_C Aromatic_O Aromatic_CA Alimatic_CA
127 128 129 130 131 132 133 134 135	Basic_C Basic_CA Basic_CA Aromatic_C Aromatic_O Aromatic_CA Aliphatic_C
127 128 129 130 131 132 133 134 135 136	Basic_C Basic_CA Basic_CA Aromatic_C Aromatic_O Aromatic_CA Aliphatic_C Aliphatic_O
127 128 129 130 131 132 133 134 135 136 137	Basic_C Basic_N Basic_CA Aromatic_C Aromatic_C Aromatic_CA Aliphatic_C Aliphatic_O Aliphatic_N
127 128 129 130 131 132 133 134 135 136 137 138	Basic_C Basic_O Basic_CA Aromatic_C Aromatic_O Aromatic_N Aromatic_CA Aliphatic_C Aliphatic_O Aliphatic_N Aliphatic_CA
127 128 129 130 131 132 133 134 135 136 137 138 139	Basic_C Basic_O Basic_CA Aromatic_C Aromatic_O Aromatic_N Aromatic_CA Aliphatic_C Aliphatic_O Aliphatic_N Aliphatic_C*
127 128 129 130 131 132 133 134 135 136 137 138 139	Basic_C Basic_N Basic_CA Aromatic_C Aromatic_O Aromatic_CA Aliphatic_C Aliphatic_O Aliphatic_N Aliphatic_CA Polar_C*
128 129 130 131 132 133 134 135 136 137 138 139 140	Basic_C Basic_N Basic_CA Aromatic_C Aromatic_O Aromatic_CA Aliphatic_CA Aliphatic_C Aliphatic_N Aliphatic_CA Polar_C* Polar_O*
128 129 130 131 132 133 134 135 136 137 138 139 140 141	Basic_C Basic_O Basic_CA Aromatic_C Aromatic_O Aromatic_O Aromatic_CA Aliphatic_CA Aliphatic_C Aliphatic_CA Aliphatic_CA Polar_C* Polar_O* Polar_N*
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	Basic_C Basic_O Basic_CA Aromatic_C Aromatic_O Aromatic_CA Aliphatic_CA Aliphatic_C Aliphatic_O Aliphatic_N Aliphatic_CA Polar_C* Polar_N* Acid C*
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	Basic_C Basic_N Basic_CA Aromatic_C Aromatic_O Aromatic_CA Aliphatic_CA Aliphatic_C Aliphatic_N Aliphatic_N Aliphatic_N Aliphatic_CA Polar_C* Polar_O* Acid_C*
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	Basic_C Basic_O Basic_CA Aromatic_C Aromatic_O Aromatic_O Aromatic_CA Aliphatic_CA Aliphatic_CA Aliphatic_CA Aliphatic_CA Polar_C* Polar_O* Polar_N* Acid_C* Acid_O* Basic_C*
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	Basic_C Basic_O Basic_CA Aromatic_C Aromatic_O Aromatic_O Aromatic_CA Aliphatic_CA Aliphatic_C Aliphatic_CA Aliphatic_CA Polar_C* Polar_O* Polar_O* Basic_C* Basic_C* Basic_C*
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	Basic_C Basic_N Basic_CA Aromatic_C Aromatic_O Aromatic_N Aromatic_CA Aliphatic_C Aliphatic_C Aliphatic_C Aliphatic_N Aliphatic_C* Polar_C* Polar_N* Acid_C* Basic_C* Basic_C* Basic_N*
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	Basic_C Basic_N Basic_CA Aromatic_C Aromatic_O Aromatic_N Aromatic_CA Aliphatic_C Aliphatic_C Aliphatic_O Aliphatic_N Aliphatic_CA Polar_C* Polar_O* Polar_N* Acid_C* Basic_C* Basic_C* Basic_C*
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147	Basic_C Basic_O Basic_N Basic_CA Aromatic_C Aromatic_O Aromatic_N Aromatic_CA Aliphatic_C Aliphatic_O Aliphatic_O Aliphatic_CA Polar_C* Polar_O* Polar_O* Basic_C* Basic_C* Basic_C* Aromatic_C* Aliphatic_C*

149 Atoms_8A

_

_

Supplementary Table S5 The results of Mann-Whitney Test for AAPs. For polar, acid, basic, aromatic and aliphatic AAP, they are polar amino acids of S, T, C, P, N, Q, acidic amino acids of D, E, basic amino acids of K, R, H, aromatic amino acids of F, Y, W, and aliphatic amino acids of G, A, V, L, I, M.

Types of AAPs	P-value
Y-Ser	0.837
Y-Thr	0.939
Y-Cys	0.194
Y-Pro	0.529
Y-Asn	0.176
Y-Gln	0.385
Y-Asp	0.057
Y-Glu	0.286
Y-Lys	0.828
Y-Arg	0.056
Y-His	0.557
Y-Phe	0.016
Y-Tyr	0.000
Y-Trp	0.296
Y-Gly	0.884
Y-Ala	0.010
Y-Val	0.085
Y-Leu	0.032
Y-Ile	0.004
Y-Met	0.001
Y-Polar	0.248
Y-Acid	0.039
Y-Basic	0.265
Y-Aromatic	0.000
Y-Aliphatic	0.000

Supplementary Table S6 The results of Mann-Whitney Test for AATs. The table shows the P-value of Mann-Whitney test. For example, in the AAT of Phe-Y-X, the P-value is 0.840 when X is Ser.

AAT	Phe-Y-X	Tyr-Y-X	Ala-Y-X	Leu-Y-X	Ile-Y-X	Met-Y-X
x		-				
S	0.840	0.011	0.017	0.090	0.651	0.025
Т	0.871	0.010	0.223	0.820	0.197	0.043
С	0.097	0.054	0.018	0.205	0.007	0.025
Р	0.748	0.100	0.647	0.900	0.907	0.509
Ν	0.230	0.003	0.677	0.177	0.768	0.279
Q	0.886	0.016	0.110	0.028	0.204	0.059
D	0.182	0.006	0.004	0.201	0.022	0.033
E	0.065	0.001	0.493	0.876	0.058	0.001
K	0.297	0.000	0.126	0.345	0.177	0.154
R	0.061	0.000	0.052	0.105	0.077	0.006
Η	0.645	0.100	0.716	0.504	0.294	0.039
F	0.303	0.001	0.057	0.053	0.004	0.001
Y	0.001	0.000	0.000	0.000	0.000	0.023
W	0.306	0.337	0.321	0.458	0.095	0.808
G	0.287	0.078	0.819	0.737	0.463	0.014
А	0.057	0.000	0.166	0.021	0.016	0.009
V	0.091	0.000	0.257	0.051	0.012	0.009
L	0.053	0.000	0.021	0.293	0.006	0.000
Ι	0.004	0.000	0.016	0.006	0.544	0.001
М	0.001	0.023	0.009	0.000	0.001	0.031

Supplementary Table S7 The results of Mann-Whitney Test of structural features. The table shows the P-value of Mann-Whitney test in the structural features. For example, 'Ser-C*' means side-chain carbon from Ser. 'Aromatic-C*' means side-chain carbon of aromatic amino acids. There are polar amino acids of S, T, C, P, N, Q, acidic amino acids of D, E, basic amino acids of K, R, H, aromatic amino acids of F, Y, W, and aliphatic amino acids of G, A, V, L, I, M.

Type of Structral features	P-value
Ser-C*	0.507
Ser-O*	0.602
Thr-C*	0.797
Thr-O*	0.629
Cys-C*	0.300
Cys-S*	0.142
Pro-C*	0.904
Asn-C*	0.993
Asn-O*	0.640
Asn-N*	0.944
Gln-C*	0.330

Cln O*	0 767
Cln N*	0.107
Age C*	0.120
Asp-C*	0.259
Asp-0*	0.151
Glu-C*	0.002
Glu-O*	0.041
Acid-O*	0.013
Lys-C*	0.400
Lys-N*	0.752
Arg-C*	0.062
Arg-N*	0.370
His-C*	0.969
His-N*	0.841
Basic-N*	0.361
Phe-C*	0.194
Tyr-C*	0.000
Tyr-O*	0.008
Trp-C*	0.681
Trp-N*	0.916
Ala-C*	0.040
Val-C*	0.297
Leu-C*	0.002
Ile-C*	0.216
Met-C*	0.000
Met-S*	0.013
S* a	0.015
Aromatic-C*	0.002
Aliphatic-C*	0.000
Atom 8A	0.000
"(S*' means side-chain sulfi	ur from
Met and Cys	ui iittiii
wiet and Cys.	

Supplementary Table S8 The nine clusters in predictive model using MDD method. For predictive model using MDD method, the column of 'Ps' is the conserved position in sequence used for clustering, and '+' means that the amino acid is in the downstream of the peptide, and vice versa. The column of 'Amino Acid' is the amino acid feature used for clustering. 'CP' is the condition positive; 'CN' is the condition negative.

Predictive Model	Cluster	Ps	Amino Acid	СР	CN
	1	-4	Acid	89	494
	2	-2	Basic	73	434
	3	5	Basic	60	360
MDD	4	6	Basic	49	328
	5	-3	Basic	42	293
	6	2	Basic	35	209
	7	-9	Acid	28	135
	8	-1	Acid	21	78
	9	-	-	118	608

Supplementary Table S9 The evaluation results of each cluster in predictive model using MDD method. 'NF' is the number of features used in the cluster. 'AC' is accuracy. 'SN' is sensitivity. 'SP' is specificity. Predictive model used the MDD method of sequence-based clustering. For Total and Balanced sensitivity and specificity, Total and Balanced SN = Total_TP/(Total_TP+Total_FN), Total and Balance SP = Total_TN/(Total_TN+Total_FP), where the Total_TP, Total_TN, Total_FN and Total_FP are the total number of TP, TN, FN and FP in nine clusters.

Predictive	Cluster	NF	AC (%)	SN (%)	SP (%)
Model					
	1	14	88.16	68.54	91.70
	2	14	89.35	67.12	93.09
	3	11	91.43	83.33	92.78
	4	15	89.66	71.43	92.38
MDD	5	16	90.45	69.05	93.52
MDD	6	26	86.48	65.71	89.95
	7	23	94.48	96.43	94.07
	8	11	94.95	95.24	94.87
	9	11	75.34	33.90	83.39
	Total and B	alanced	77.75	64.85	90.64

Supplementary Table S10 The evaluation results of each cluster only using sequence features in the predictive model using modified MDD method. 'NF' is the number of features used in the cluster. 'AC' is accuracy; 'SN' is sensitivity; 'SP' is specificity. Predictive model used the modified MDD method of structure-based clustering.

Predictive Model	Cluster	NF	AC (%)	SN (%)	SP (%)
	1	39	77.31	33.93	84.83
Modified MDD	2	13	83.41	32.53	91.09
	3	11	81.24	31.43	90.74

4 34 79.02 40.86 86.43 5 21 79.53 39.13 85.81 6 33 81.60 39.29 88.04 7 31 80.67 38.46 87.83 8 30 81.75 39.47 89.52 9 12 83.94 33.87 91.06		Total and Balanced		62.36	36.12	88.60
4 34 79.02 40.86 86.43 5 21 79.53 39.13 85.81 6 33 81.60 39.29 88.04 7 31 80.67 38.46 87.83 8 30 81.75 39.47 89.52		9	12	83.94	33.87	91.06
4 34 79.02 40.86 86.43 5 21 79.53 39.13 85.81 6 33 81.60 39.29 88.04 7 31 80.67 38.46 87.83		8	30	81.75	39.47	89.52
4 34 79.02 40.86 86.43 5 21 79.53 39.13 85.81 6 33 81.60 39.29 88.04		7	31	80.67	38.46	87.83
4 34 79.02 40.86 86.43 5 21 79.53 39.13 85.81		6	33	81.60	39.29	88.04
4 34 79.02 40.86 86.43		5	21	79.53	39.13	85.81
	·	4	34	79.02	40.86	86.43

Figure S1. The hydrophobic/hydrophilic environment at the nitrated tyrosine. The environment of nitrated tyrosine (yellow) formed by oxygen (red), nitrogen (blue), carbon (gray) are shown. The color from hydrophilic to hydrophobic is from blue to brown.