ODE's $\frac{\alpha}{dt} glc_Ext = -v_{PTS_Glc}$ $\frac{d}{dt}g6p = +v_{PTS_Glc} - v_{PGI}$ $\frac{d}{dt}f6p = -v_{MPD} + v_{PGI} - v_{PFK} + v_{FBPase}$ $\frac{d}{dt}fbp = +v_{PFK} - v_{FBA} - v_{FBPase}$ $\frac{dt}{dt}g^{3}p = +2v_{FBA} - v_{GAPDH}$ $\frac{d}{dt}bpg = +v_{GAPDH} - v_{ENO}$ $\frac{dt}{dt}pep = -v_{PTS_Glc} + v_{ENO} - v_{PYK}$ $\frac{d}{dt}pyr = +v_{PTS_Glc} - v_{PFL} - v_{PDC} + 2v_{PYK} - v_{LDH}$ $\frac{d}{dt}pyr = +v_{PTS_Glc} - v_{PFL} - v_{ACK}$ $acetCoA = +v_{PFL} - v_{AE} - v_{ACK}$ $acetoin = +v_{PDC} - v_{BDH} - v_{Ace. Trsp.}$ $acetoin_Ext = +v_{Ace.\ Trsp.}$ $2,3butanediol = +v_{BD}$ $\frac{dt}{dt}$ $m1p = +v_{MPD} - v_{MP} + v_{PTS_Mtl}$ dţ $mannitol = +v_{MP} - v_{Mtl. Trsp}$ $\frac{dt}{dt} mannitol = +v_{MP} - v_{Mtl. Trsp}$ $\frac{d}{dt} mannitol_Ext = -v_{PTS_Mtl} + v_{Mtl. Trsp.}$ $\frac{d}{dt} lactate = +v_{LDH}$ $\frac{d}{dt} ethanol = +v_{AE}$ $\frac{d}{dt} acetate = +v_{ACK}$ $\frac{d}{dt} pi = +v_{ATPase} + 2v_{piTrsp.} - v_{GAPDH} + v_{FBPase}$ $\frac{d}{dt} pi_Ext = -v_{piTrsp.}$ $\frac{d}{dt}atp = -v_{ATPase} + v_{ACK} - v_{Pi\,Trsp.} - v_{PFK} + v_{ENO} + v_{PYK}$ $\frac{d}{dt}nad = +2v_{AE} + v_{BDH} + v_{MPD} - v_{GAPDH} + v_{LDH}$ $\frac{dt}{dt}CoA = +v_{ACK} - v_{PFL} + v_{AE}$ $\frac{d}{dt}formate = +v_{PFL}$

Table 1. ODEs used in the model based on mass balances.

Table 2. Initial and optimized kinetic model parameters.					
Enzyme	Index	Parameter	Initial value	Source	Estimated value
PTS_Glc	1	$V_{max}^{PTS_Glc}$	1	[-]	3.71 mmol/s
	2	K_a^{pi}	0.5	[-]	0.071 mM
	3	K_{i}^{fbp}	0.5	[-]	1.17 mM
	4	K_m^{g6p}	0.1	[1]	0.28 mM
	5	$K_m^{glc_{Ext}}$	0.015	[1]	0.049 mM
	6	K_m^{pep}	0.15	[1]	0.31 mM
	7	K_m^{pyr}	0.1	[1]	1.96 mM
ATPase	8	V _{max} ^{ATPase}	1.25	[1]	3.29 mM/s
	9	K_m^{atp}	1.5	[1]	4.34 mM
	10	n ^{ATPase}	3	[1]	[-]
pi Trsp.	11	$V_{max}^{pi.Trsp.}$	1	[-]	3.60 mmol/s
	12	K_i^{pi}	0.5	[-]	0.56 mM
	13	K_m^{adp}	0.5	[-]	0.19 mM
	14	K_m^{atp}	0.5	[-]	0.52 mM
	15	$K_m^{pi_ext}$	0.5	[-]	0.75 mM
	16	K_m^{pi}	0.5	[-]	0.30 mM
PGI	17	K_{eq}^{PGI}	0.43	[3]	[-]
	18	V_{max}^{PGI}	651	[4]	21.68 mM/s
	19	K_m^{f6p}	0.147	[3]	3.14 mM
	20	K_m^{g6p}	0.28	[4]	0.20 mM
PFK	21	V_{max}^{PFK}	2.23	[1]	18.36 mM/s
	22	K_m^{adp}	0.49	[5]	10.74 mM
	23	K_m^{atp}	0.18	[1]	0.062 mM
	24	K_m^{f6p}	0.25	[1]	1.02 mM
	25	K_m^{fbp}	16.7	[5]	86.80 mM
FBA	26	K_{eq}^{PBA}	0.056	[1]	[-]
	27	V_{max}^{FBA}	9.9	[1]	56.13 mM/s
	28	K_m^{fbp}	0.17	[1]	0.30 mM
	29	K_m^{g3p}	2.8	[1]	10.11 mM
GAPDH	30	K_{eq}^{GAPDH}	0.0007	[1]	[-]
	31	V_{max}^{GAPDH}	37.58	[1]	30.01 mM/s
	32	K_m^{bpg}	0.05	[1]	0.048 mM
	33	$K_m^{g_{3p}}$	0.25	[1]	0.18 mM
	34	K_m^{nadh}	0.067	[1]	0.64 mM
	35	K_m^{nad}	0.2	[1]	0.048 mM
	36	K_m^{pi}	2.35	[1]	6.75 mM
ENO	37	K_{eq}^{ENO}	27.55	[1]	[-]
	38	V_{max}^{ENO}	14.84	[1]	29.13 mM/s
	39	K_m^{adp}	0.2	[1]	0.41 mM
	40	K_m^{atp}	0.3	[1]	0.75 mM
	41	K_{m}^{bpg}	0.003	[1]	0.024 mM
	42	K_m^{pep}	0.53	[1]	1.39 mM

|--|

```
Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is \textcircled{C} The Royal Society of Chemistry 2014
```

РҮК	43	V_{max}^{PYK}	4.82	[1]	2.22 mM/s
	44	K_a^{fbp}	0.2	[1]	0.039 mM
	45	K_i^{pi}	0.5	[1]	3.70 mM
	46	K_m^{adp}	1	[1]	3.08 mM
	47	K_m^{atp}	10	[1]	29.60 mM
	48	K_m^{pep}	0.17	[1]	0.33 mM
	49	K_m^{pyr}	21	[1]	96.42 mM
	50	n^{PYK}	3	[1]	[-]
LDH	51	V_{max}^{LDH}	36.49	[1]	566.60 mmol/s
	52	K_a^{fbp}	0.002	[1]	0.018 mM
	53	K_i^{pi}	0.002	[1]	0.068 mM
	54	$K_m^{lactate}$	100	[6]	94.12 mM
	55	K_m^{nadh}	0.08	[6]	0.14 mM
	56	K_m^{nad}	2.4	[6]	3.08 mM
	57	K_m^{pyr}	1.5	[6]	0.01 mM
PFL	58	K_{eq}^{PFL}	650	[7]	[-]
	59	K_m^{CoA}	0.02	[8]	0.12 mM
	60	V_{max}^{PFL}	4.317	[6]	0.0023 mmol/s
	61	$K_i^{g_{3p}}$	0.001	[9]	0.51 mM
	62	$K_m^{acetCoA}$	0.008	[6]	7.34 mM
	63	K ^{formate}	24	[6]	54.27 mM
	64	K_m^{pyr}	1	[6]	5.78 mM
AE	65	V_{max}^{AE}	1.62	[6]	2.12 mmol/s
	66	K_{\cdot}^{atp}	0.5	[-]	6.28 mM
	67	KacetCoA	0.007	[6]	7.38 mM
	68	K ^C OA	0.008	[6]	0.092 mM
	69	™m ¥ethanol	1	[6]	2.28 mM
	70	N _m K ^{nadh}	0.025	[6]	0.43 mM
	71	K_m^{nad}	0.08	[6]	1.31 mM
ACK	72	V _{max}	8.93	[6]	3.84 mmol/s
	73	K_m^{adp}	0.5	[6]	1.17 mM
	74	K^{atp}_{m}	0.07	[6]	14.16 mM
	75	$K_m^{acetCoA}$	0.2	[6]	0.56 mM
	76	$K_m^{acetate}$	7	[6]	0.55 mM
	77	K_m^{CoA}	0.1	[6]	0.17 mM
PDC	78	K_{eq}^{PDC}	900000	[11]	[-]
	79	V_{max}^{PDC}	10	[6]	0.35 mM/s
	80	$K_m^{acetoin}$	0.5	[-]	0.050 mM
	81	K_m^{pyr}	5.2	[10]	0.26 mM

BDH	82	K_{eq}^{BDH}	1400	[6]	[-]
	83	V_{max}^{BDH}	1.75	[6]	2.29 mmol/s
	84	$K_m^{acetoin}$	0.06	[6]	5.62 mM
	85	$K_m^{butanediol}$	2.6	[6]	1.81 mM
	86	K_m^{nadh}	0.02	[6]	3.55 mM
	87	K_m^{nad}	0.16	[6]	1.30 mM
MPD	88	K_{eq}^{MPD}	200	[12]	[-]
	89	V_{max}^{MPD}	1	[2]	1.33 mM/s
	90	K_i^{f6p}	3.3	[2]	22.03 mM
	91	K_m^{f6p}	1.66	[2]	0.32 mM
	92	K_m^{m1p}	0.15	[2]	0.089 mM
	93	K_m^{nadh}	0.016	[2]	0.030 mM
	94	K_m^{nad}	0.06	[2]	0.37 mM
MP	95	V_{max}^{MP}	1	[-]	3.49 mM/s
	96	K_m^{m1p}	0.2	[13]	3.52 mM
	97	$K_m^{mannitol}$	0.5	[-]	0.24 mM
PTS_Mtl	98	$V_{max}^{PTS_{Mtl}}$	1	[-]	4.45 mmol/s
	99	K_m^{m1p}	0.5	[-]	0.36 mM
	100	$K_m^{mannitol_Ext}$	0.5	[-]	0.013 mM
	101	K_m^{pep}	0.5	[-]	2.21 mM
	102	K_m^{pyr}	0.5	[-]	0.34 mM
Ace. Trsp.	103	$V_{max}^{Ace.Trsp.}$	1	[-]	1.60 mmol/s
	104	$K_m^{acetoin}$	0.5	[-]	1.89 mM
	105	$K_m^{acetoin_Ext}$	0.5	[-]	7.05 mM
Mtl. Trsp.	106	$V_{max}^{Mtl.Trsp.}$	1	[-]	1.62 mmol/s
	107	$K_m^{mannitol_Ext}$	0.5	[-]	0.94 mM
	108	$K_m^{mannitol}$	0.5	[-]	0.022 mM
FBPase	109	V_{max}^{FBPase}	1	[-]	0.097 mM/s
	110	K_m^{f6p}	0.5	[-]	1.91 mM
	111	K_m^{fbp}	0.5	[-]	0.41 mM
	112	K_m^{pi}	0.5	[-]	0.011 mM

Parameters with missing reference or not estimated represented by "[-]". Here the initial V_{max} values units are given in mM/s and the initial K_m values in mM. All the abbreviations for the enzymes are explained in nomenclature.

Reference List

1. Levering J, Musters MWJM, Bekker M, Bellomo D, Fiedler T, de Vos WM *et al.*: Role of phoshate in the central metabolism of two lactic acid bacteria - a comparative systems biology approach. *FEBS J* 2012, **279**: 1274-1290.

- 2. Brown AT, Bowles RD: Polyol Metabolism by A Caries-Conducive Streptococcus -Purification and Properties of A Nicotinamide Adenine Dinucleotide-Dependent Mannitol-1-Phosphate Dehydrogenase. *Infection and Immunity* 1977, **16**: 163-173.
- 3. Pettersson G: What Metabolite Levels May be Evolutionarily Reached in the Glycolytic Pathway. *European Journal of Biochemistry* 1990, **194**: 141-146.
- 4. Gao H, Chen Y, Leary JA: Kinetic measurements of phosphoglucose isomerase and phosphomannose isomerase by direct analysis of phosphorylated aldose-ketose isomers using tandem mass spectrometry. *International Journal of Mass Spectrometry* 2005, **240**: 291-299.
- 5. Hansen T, Schonheit P: Purification and properties of the first-identified, archaeal, ATP-dependent 6-phosphofructokinase, an extremely thermophilic non-allosteric enzyme, from the hyperthermophile *Desulfurococcus amylolyticus*. Archives of Microbiology 2000, **173**: 103-109.
- Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, Van Swam II *et al.*: Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. *Microbiology* 2002, 148: 1003-1013.
- 7. Andersen AZ, Carvalho AL, Neves AR, Santos H, Kummer U, Olsen LF: **The metabolic pH** response in Lactococcus lactis: An integrative experimental and modelling approach. *Computational Biology and Chemistry* 2009, **33**: 71-83.
- 8. Takahashi S, Abbe K, Yamada T: Purification of Pyruvate Formate-Lyase from Streptococcus-Mutans and Its Regulatory Properties. *Journal of Bacteriology* 1982, 149: 1034-1040.
- 9. Asanuma N, Hino T: Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis. *Applied and Environmental Microbiology* 2000, 66: 3773-3777.
- 10. Tittmann K, Vyazmensky M, Hubner G, Barak Z, Chipman DM: **The carboligation** reaction of acetohydroxyacid synthase II: Steady-state intermediate distributions in wild type and mutants by NMR. *Proceedings of the National Academy of Sciences of the United States of America* 2005, **102**: 553-558.
- 11. Hoefnagel MHN, van der Burgt A, Martens DE, Hugenholtz J, Snoep JL: Time dependent responses of glycolytic intermediates in a detailed glycolytic model of *Lactococcus lactis* during glucose run-out experiments. *Molecular Biology Reports* 2002, **29**: 157-161.
- 12. Wolff JB, Kaplan NO: **D-Mannitol 1-Phosphate Dehydrogenase from Escherichia-Coli.** *Journal of Biological Chemistry* 1956, **218:** 849-869.
- 13. Schomburg I, Chang A, Schomburg D: **BRENDA**, enzyme data and metabolic information. *Nucleic Acids Research* 2002, **30**: 47-49.

Metabolite	Initial concentration	Source		
	(mM)			
glc_Ext	40	experimental		
дбр	0	assumed		
fбp	0	assumed		
fbp	15.3	experimental		
g3p	0	experimental		
bpg	1.26	estimated		
pep	2.48	estimated		
pyr	0	experimental		
lactate	0	experimental		
acetoin	0	experimental		
acetoin_Ext	0	experimental		
2,3-butanediol	0	experimental		
acetCoA	0	experimental		
CoA	1	[1]		
ethanol	0	experimental		
formate	0	experimental		
acetate	0	experimental		
m1p	0	experimental		
mannitol	0	experimental		
mannitol_Ext	0	experimental		
atp	4.89	estimated		
adp	20.39	estimated		
nad	4.67	experimental		
nadh	2.03.10-6	estimated		
pi	38.26	experimental		
pi_Ext	50	experimental		

Table 3. Initial conditions of state variables (metabolites concentrations) for 40mM glucose pulse in the kinetic model.

All the abbreviations for the metabolites are explained in nomenclature.

Reference List

 Hoefnagel MHN, van der Burgt A, Martens DE, Hugenholtz J, Snoep JL: Time dependent responses of glycolytic intermediates in a detailed glycolytic model of *Lactococcus lactis* during glucose run-out experiments. *Molecular Biology Reports* 2002, 29: 157-161.

Table 4. Kinetic rate expressions used in the model.

Phosphotransferase System (PTS_Glc):

$$r_{PTS_{Glc}} = \left(\frac{[\text{pi}]}{K_a^{pi} + [\text{pi}]}\right) \left(\frac{K_i^{fbp}}{K_i^{fbp} + [\text{fbp}]}\right) \frac{V_{max}^{PTS_Glc} \left(\frac{[\text{glc_Ext}]}{K_m^{glc_Ext}}\right) \left(\frac{[\text{pep}]}{K_m^{glep}}\right)}{\left(1 + \frac{[\text{glc_Ext}]}{K_m^{glc_Ext}}\right) \left(1 + \frac{[\text{pep}]}{K_m^{pep}}\right) + \left(1 + \frac{[\text{g6p}]}{K_m^{g6p}}\right) \left(1 + \frac{[\text{pyr}]}{K_m^{pyr}}\right) - 1}$$

Phosphoglucose isomerase (PGI):

$$r_{PGI} = \frac{V_{max}^{PGI} \frac{[g6p]}{K_m^{g6p}} - \frac{V_{max}^{PGI}}{K_e^{PGI}} \frac{[f6p]}{K_m^{g6p}}}{1 + \frac{[g6p]}{K_m^{g6p}} + \frac{[f6p]}{K_m^{f6p}}}$$

Phosphofructokinase (PFK):

$$r_{PFK} = \frac{V_{max}^{PFK} \left(\frac{[f6p]}{K_m^{f6p}}\right) \left(\frac{[atp]}{K_m^{atp}}\right)}{\left(1 + \frac{[f6p]}{K_m^{f6p}}\right) \left(1 + \frac{[atp]}{K_m^{atp}}\right) + \left(1 + \frac{[fbp]}{K_m^{fbp}}\right) \left(1 + \frac{[adp]}{K_m^{adp}}\right) - 1}$$

Fructose-1,6-bisphosphate phosphatase (FBPase):

$$r_{FBPase} = \frac{V_{max}^{FBPase} \left(\frac{[\text{fbp}]}{K_m^{fbp}}\right)}{\left(1 + \frac{[\text{fbp}]}{K_m^{fbp}}\right) + \left(1 + \frac{[\text{f6p}]}{K_m^{f6p}}\right) \left(1 + \frac{[\text{pi}]}{K_m^{pi}}\right) - 1}$$

Fructose-1,6-bisphosphate aldolase (FBA):

$$r_{FBA} = \frac{V_{max}^{FBA} \frac{[\text{fbp}]}{K_m^{fbp}} - \frac{V_{max}^{FBA} [g3p]^2}{K_{eq}^{FBA} K_m^{fbp}}}{1 + \frac{[\text{fbp}]}{K_m^{fbp}} + \frac{[g3p]}{K_m^{g3p}} + \left(\frac{[g3p]}{K_m^{g3p}}\right)^2}$$

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH):

$$r_{GAPDH} = \frac{V_{max}^{GAPDH} \frac{[g3p]}{K_m^{g3p}} \frac{[nad]}{K_m^{ad}} \frac{[pi]}{K_m^{pi}} - \frac{V_{max}^{GAPDH}}{K_{eq}^{GAPDH}} \frac{[bpg]}{K_m^{g3p}} \frac{[nadh]}{K_m^{nad}} \frac{1}{K_m^{pi}}}{\left(1 + \frac{[g3p]}{K_m^{g3p}}\right) \left(1 + \frac{[pi]}{K_m^{pi}}\right) \left(1 + \frac{[nad]}{K_m^{nad}}\right) + \left(1 + \frac{[bpg]}{K_m^{bpg}}\right) \left(1 + \frac{[nadh]}{K_m^{nadh}}\right) - 1}$$

Enolase (ENO):

$$r_{ENO} = \frac{V_{max}^{ENO} \frac{[bpg]}{K_m^{g3p}} \frac{[adp]}{K_m^{adp}} - \frac{V_{max}^{ENO} \frac{[pep]}{K_m^{bpg}} \frac{[atp]}{K_m^{adp}}}{\left(1 + \frac{[bpg]}{K_m^{bpg}}\right) \left(1 + \frac{[adp]}{K_m^{adp}}\right) + \left(1 + \frac{[pep]}{K_m^{pep}}\right) \left(1 + \frac{[atp]}{K_m^{atp}}\right) - 1}$$

Pyruvate kinase (PYK):

$$r_{PYK} = \left(\frac{[\text{fbp}]}{K_a^{fbp} + [\text{fbp}]}\right) \left(\frac{\left(K_i^{pi}\right)^{n^{PYK}}}{\left(K_i^{pi}\right)^{n^{PYK}} + ([\text{pi}])^{n^{PYK}}}\right) \frac{V_{max}^{PYK}\left(\frac{[\text{adp}]}{K_m^{adp}}\right) \left(\frac{[\text{pep}]}{K_m^{pep}}\right)}{\left(1 + \frac{[\text{adp}]}{K_m^{adp}}\right) \left(1 + \frac{[\text{pep}]}{K_m^{pep}}\right) + \left(1 + \frac{[\text{atp}]}{K_m^{atp}}\right) \left(1 + \frac{[\text{pyr}]}{K_m^{pyr}}\right) - 1}$$

L-lactate dehydrogenase (LDH):

$$r_{LDH} = \left(\frac{[\text{fbp}]}{K_a^{fbp} + [\text{fbp}]}\right) \left(\frac{K_i^{pi}}{K_i^{pi} + [\text{pi}]}\right) \frac{V_{max}^{LDH}\left(\frac{[\text{pyr}]}{K_m^{pyr}}\right) \left(\frac{[\text{nadh}]}{K_m^{nadh}}\right)}{\left(1 + \frac{[\text{pyr}]}{K_m^{pyr}}\right) \left(1 + \frac{[\text{nadh}]}{K_m^{nadh}}\right) + \left(1 + \frac{[\text{lactate}]}{K_m^{lactate}}\right) \left(1 + \frac{[\text{nad}]}{K_m^{nadh}}\right)}$$

Pyruvate dehydrogenase (PFL):

$$r_{PFL} = \left(\frac{K_i^{g3p}}{K_i^{g3p} + [g3p]}\right) \frac{V_{max}^{PFL} \frac{[pyr]}{K_m^{pyr}} \frac{[CoA]}{K_m^{CoA}} - \frac{V_{max}^{PFL}}{K_e^{PFL}} \frac{[acetCoA]}{K_m^{Pyr}} \frac{[formate]}{K_m^{CoA}}}{\left(1 + \frac{[pyr]}{K_m^{pyr}}\right) \left(1 + \frac{[CoA]}{K_m^{CoA}}\right) + \left(1 + \frac{[acetCoA]}{K_m^{acetCoA}}\right) \left(1 + \frac{[formate]}{K_m^{formate}}\right) - 1}$$

Alcohol dehydrogenase (AE):

 r_{AE}

$$= \left(\frac{K_i^{atp}}{K_i^{atp} + [atp]}\right) \frac{V_{max}^{AE} \left(\frac{[acetCoA]}{K_m^{acetCoA}}\right) \left(\frac{[nadh]}{K_m^{nadh}}\right)^2}{\left(1 + \frac{[acetCoA]}{K_m^{acetCoA}}\right) \left(1 + \frac{[nadh]}{K_m^{nadh}} + \left(\frac{[nadh]}{K_m^{nadh}}\right)^2\right) + \left(1 + \frac{[ethanol]}{K_m^{ethanol}}\right) \left(1 + \frac{[coA]}{K_m^{acetCoA}}\right) \left(1 + \frac{[nad]}{K_m^{nad}} + \left(\frac{[nad]}{K_m^{nadh}}\right)^2\right) - 1}$$

Acetate kinase (ACK):

$$r_{ACK} = \frac{V_{max}^{ACK} \left(\frac{[acetCoA]}{K_m^{acetCoA}}\right) \left(\frac{[adp]}{K_m^{adp}}\right)}{\left(1 + \frac{[acetCoA]}{K_m^{acetCoA}}\right) \left(1 + \frac{[adp]}{K_m^{adp}}\right) + \left(1 + \frac{[acetate]}{K_m^{acetate}}\right) \left(1 + \frac{[atp]}{K_m^{adp}}\right) \left(1 + \frac{[CoA]}{K_m^{CoA}}\right) - 1}$$

Pyruvate decarboxylase (PDC):

$$r_{PDC} = \frac{V_{max}^{PD} \left(\frac{[\text{pyr}]}{K_m^{pyr}}\right)^2 - \frac{V_{max}^{PD}}{K_{eq}^{PD}} \frac{[\text{acetoin}]}{K_m^{pyr}}}{\left(1 + \frac{[\text{pyr}]}{K_m^{pyr}} + \left(\frac{[\text{pyr}]}{K_m^{pyr}}\right)^2\right) + \left(1 + \frac{[\text{acetoin}]}{K_m^{acetoin}}\right) - 1}$$

2,3-Butanediol dehydrogenase (BDH):

$$r_{BDH} = \frac{V_{max}^{BD} \left(\frac{[acetoin]}{K_m^{acetoin}}\right) \left(\frac{[nadh]}{K_m^{nadh}}\right) - \frac{V_{max}^{BD}}{K_{eq}^{BD}} \frac{[2,3 - butanediol]}{K_m^{acetoin}} \frac{[nad]}{K_m^{nadh}}}{\left(1 + \frac{[acetoin]}{K_m^{acetoin}}\right) \left(1 + \frac{[nadh]}{K_m^{nadh}}\right) + \left(1 + \frac{[2,3 - butanediol]}{K_m^{butanediol}}\right) \left(1 + \frac{[nad]}{K_m^{nadh}}\right) - 1}$$

Acetoin transport (Ace. Trsp.):

$$r_{Ace.Trsp.} = \frac{V_{max}^{Ace.Trsp.} \left(\frac{[acetoin]}{K_m^{acetoin}}\right)}{\left(1 + \frac{[acetoin]}{K_m^{acetoin}}\right) + \left(1 + \frac{[acetoin_Ext]}{K_m^{acetoin_Ext}}\right) - 1}$$

Mannitol-1-Phosphate dehydrogenase (MPD):

$$r_{MPD} = \left(\frac{K_i^{f6p}}{K_i^{f6p} + [f6p]}\right) \frac{V_{max}^{MPD} \frac{[f6p]}{K_m^{f6p}} \frac{[nadh]}{K_m^{f6p}} - \frac{V_{max}^{MPD}}{K_e^{MPD}} \frac{[m1p]}{K_m^{f6p}} \frac{[nad]}{K_m^{nadh}}}{\left(1 + \frac{[f6p]}{K_m^{f6p}}\right) \left(1 + \frac{[nadh]}{K_m^{nadh}}\right) + \left(1 + \frac{[m1p]}{K_m^{m1p}}\right) \left(1 + \frac{[nad]}{K_m^{nad}}\right) - 1}$$

Mannitol-1-Phosphatase (MP):

$$r_{MP} = \frac{V_{max}^{MP} \left(\frac{[\text{m1p}]}{K_m^{m1p}}\right)}{\left(1 + \frac{[\text{m1p}]}{K_m^{m1p}}\right) + \left(1 + \frac{[\text{mannitol}]}{K_m^{mannitol}}\right) - 1}$$

Phosphotransferase System (PTS_Mtl):

$$r_{PTS_Mtl} = \frac{V_{max}^{PTS_Mtl} \left(\frac{[\text{mannitol_Ext}]}{K_m^{mannitol_Ext}}\right) \left(\frac{[\text{pep}]}{K_m^{pep}}\right)}{\left(1 + \frac{[\text{mannitol_Ext}]}{K_m^{mannitol_Ext}}\right) \left(1 + \frac{[\text{pep}]}{K_m^{pep}}\right) + \left(1 + \frac{[\text{m1p}]}{K_m^{m1p}}\right) \left(1 + \frac{[\text{pyr}]}{K_m^{pyr}}\right) - 1}$$

Mannitol transport (Mtl. Trsp.):

$$r_{Mtl.Trsp.} = \frac{V_{max}^{Mtl.Trsp.} \left(\frac{[\text{mannitol}]}{K_m^{mannitol}}\right)}{\left(1 + \frac{[\text{mannitol}]}{K_m^{mannitol}}\right) + \left(1 + \frac{[\text{mannitol}_\text{Ext}]}{K_m^{mannitol}_\text{Ext}}\right) - 1}$$

Phosphate transport (pi Trsp.):

$$r_{pi\,Trsp.} = \left(\frac{K_i^{pi}}{K_i^{pi} + [pi]}\right) \frac{V_{max}^{pi\,Trsp.}\left(\frac{[atp]}{K_m^{atp}}\right)\left(\frac{[pi_Ext]}{K_m^{pi_Ext}}\right)}{\left(1 + \frac{[atp]}{K_m^{atp}}\right)\left(1 + \frac{[pi_Ext]}{K_m^{pi_Ext}}\right) + \left(1 + \frac{[adp]}{K_m^{adp}}\right)\left(1 + \frac{[pi]}{K_m^{pi}} + \left(\frac{[pi]}{K_m^{pi}}\right)^2\right) - 1}$$

Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is The Royal Society of Chemistry 2014

ATP phosphatase (ATPase):

$$r_{ATPase} = V_{max}^{ATPase} \left(\frac{\left(\underbrace{[atp]}{K_m^{atp}} \right)^{n^{ATPase}}}{\left(\underbrace{\left(\underbrace{[atp]}{K_m^{atp}} \right)^{n^{ATPase}} + 1} \right)$$

Figure 1. Variance analysis of the parameter set values of the kinetic model. For a better visualization the variance of every parameter are plotted with a logarithmic scale. The parameter indices correspond to the reaction numbers shown in Additional File 2.

Figure 2. Simulation results for the initial metabolite concentrations and estimated kinetic parameter values listed in Additional File 3 and 2, respectively.

Figure 3. Correlation values of sensitivities between all pairs of fits from wilt-type strain for 2,3-butanediol (plots in lower triangle) and mannitol (plots in upper triangle).

Figure 4. Correlation values of sensitivities between all pairs of fits from LDH mutant strain for 2,3-butanediol (plots in lower triangle) and mannitol (plots in upper triangle).

Figure 5. Correlation values of sensitivities between all pairs of fits from LDH/PTS^{Mtl} mutant strain for 2,3-butanediol (plots in lower triangle) and mannitol (plots in upper triangle).

Figure 6. Heat maps showing the integrated response coefficients to variation in V_{max} parameters for all ten fits.