F	ragments ((↓) Labels ((→)		2	28% U-13C 100% 1-13C					9	8% U-130	2					
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	Rep 1	Rep 2	Rep 3	Avg	SD	Rep 1	Rep 2	Rep 3	Avg	SD
Ala	[23]	232	0	66%	66%	66%	66%	0%	63%	64%	63%	63%	0%	ND	ND	ND	ND	ND
Ala	[23]	232	1	10%	11%	10%	11%	0%	36%	35%	35%	35%	0%	ND	ND	ND	ND	ND
Ala	[23]	232	2	23%	23%	23%	23%	0%	1%	1%	1%	1%	0%	ND	ND	ND	ND	ND
Ala	[123]	260	0	61%	60%	61%	61%	0%	61%	61%	61%	61%	0%	3%	3%	4%	3%	0%
Ala	[123]	260	1	13%	13%	13%	13%	0%	37%	36%	37%	37%	0%	2%	2%	2%	2%	0%
Ala	[123]	260	2	8%	8%	8%	8%	0%	3%	3%	3%	3%	0%	2%	2%	2%	2%	0%
Ala	[123]	260	3	19%	18%	18%	18%	0%	0%	0%	0%	0%	0%	93%	93%	93%	93%	0%
Asp	[12]	302	0	65%	66%	65%	65%	0%	73%	72%	72%	72%	0%	11%	10%	11%	11%	0%
Asp	[12]	302	1	19%	19%	19%	19%	0%	25%	26%	26%	26%	0%	9%	9%	9%	9%	0%
Asp	[12]	302	2	16%	16%	16%	16%	0%	2%	2%	2%	2%	0%	80%	81%	81%	81%	0%
Asp	[234]	316	0	54%	54%	54%	54%	0%	55%	55%	55%	55%	0%	7%	7%	7%	7%	0%
Asp	[234]	316	1	23%	24%	23%	23%	0%	37%	37%	37%	37%	0%	6%	6%	6%	6%	0%
Asp	[234]	316	2	15%	15%	15%	15%	0%	7%	7%	7%	7%	0%	12%	12%	12%	12%	0%
Asp	[234]	316	3	7%	7%	8%	7%	0%	1%	1%	1%	1%	0%	75%	76%	75%	75 <mark>%</mark>	0%
Asp	[234]	390	0	54%	55%	55%	55%	0%	56%	56%	56%	56%	0%	7%	7%	7%	7%	0%
Asp	[234]	390	1	23%	23%	23%	23%	0%	36%	37%	37%	37%	0%	6%	5%	6%	6%	0%
Asp	[234]	390	2	15%	15%	15%	15%	0%	7%	7%	7%	7%	0%	12%	12%	12%	12%	0%
Asp	[234]	390	3	7%	7%	7%	7%	0%	0%	0%	0%	0%	0%	75%	76%	75%	75 <mark>%</mark>	0%
Asp	[1234]	418	0	48%	47%	47%	47%	0%	49%	48%	48%	49%	1%	6%	6%	6%	6%	0%
Asp	[1234]	418	1	22%	22%	22%	22%	0%	39%	40%	40%	39%	0%	3%	3%	3%	3%	0%
Asp	[1234]	418	2	17%	17%	17%	17%	0%	11%	11%	11%	11%	0%	7%	7%	7%	7%	0%
Asp	[1234]	418	3	10%	10%	11%	10%	0%	1%	1%	1%	1%	0%	13%	12%	13%	13%	1%
Asp	[1234]	418	4	3%	3%	3%	3%	0%	0%	0%	0%	0%	0%	70%	72%	70%	71%	1%
Glu	[2345]	272	0	40%	40%	40%	40%	0%	39%	39%	39%	39%	0%	1%	1%	1%	1%	0%
Glu	[2345]	272	1	23%	24%	24%	24%	0%	43%	43%	43%	43%	0%	2%	1%	2%	2%	0%
Glu	[2345]	272	2	25%	25%	25%	25%	0%	16%	16%	16%	16%	0%	5%	5%	5%	5%	0%
Glu	[2345]	272	3	8%	8%	8%	8%	0%	2%	2%	2%	2%	0%	10%	10%	10%	10%	0%
Glu	[2345]	272	4	4%	4%	4%	4%	0%	0%	0%	0%	0%	0%	82%	82%	82%	82%	0%
Glu	[2345]	330	0	41%	41%	41%	41%	0%	40%	39%	39%	39%	0%	2%	2%	2%	2%	0%
Glu	[2345]	330	1	23%	24%	23%	23%	0%	43%	43%	43%	43%	0%	2%	1%	2%	2%	0%
Glu	[2345]	330	2	25%	25%	25%	25%	0%	15%	16%	16%	16%	0%	6%	6%	6%	6%	0%
Glu	[2345]	330	3	7%	7%	7%	7%	0%	2%	2%	2%	2%	0%	9%	9%	9%	9%	0%
Glu	[2345]	330	4	3%	3%	3%	3%	0%	0%	0%	0%	0%	0%	82%	83%	82%	82%	0%
Glu	[12345]	432	0	35%	35%	35%	35%	0%	35%	34%	34%	34%	1%	1%	1%	1%	1%	0%
Glu	[12345]	432	1	21%	22%	22%	22%	0%	43%	43%	43%	43%	0%	1%	1%	1%	1%	0%
Glu	[12345]	432	2	25%	25%	25%	25%	0%	18%	19%	19%	19%	0%	2%	2%	2%	2%	0%
Glu	[12345]	432	3	13%	13%	13%	13%	0%	3%	4%	4%	4%	0%	6%	6%	7%	6%	0%
Glu	[12345]	432	4	5%	5%	4%	5%	0%	0%	0%	0%	0%	0%	11%	11%	12%	11%	0%
Glu	[12345]	432	5	2%	2%	2%	2%	0%	0%	0%	0%	0%	0%	78%	78%	77%	78%	1%
Gly	[2]	218	0	73%	73%	73%	73%	0%	ND	ND	ND	ND	ND	11%	11%	11%	11%	0%

Fra	agments (↓) Labels ((→)		2	8% U-130	0	100% 1-13C							98	8% U-130	;	
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	Rep 1	Rep 2	Rep 3	Avg	SD	Rep 1	Rep 2	Rep 3	Avg	SD
Gly	[2]	218	1	27%	27%	27%	27%	0%	ND	ND	ND	ND	ND	89%	89%	89%	89%	0%
Gly	[12]	246	0	64%	63%	64%	64%	0%	92%	91%	91%	91%	1%	7%	7%	7%	7%	0%
Gly	[12]	246	1	18%	18%	17%	18%	0%	8%	9%	9%	9%	0%	5%	4%	5%	5%	0%
Gly	[12]	246	2	18%	19%	19%	19%	0%	0%	1%	1%	0%	0%	88%	89%	88%	88%	0%
His	[2345]	196	0	36%	36%	35%	36%	1%	58%	58%	57%	58%	0%	9%	8%	8%	8%	0%
His	[2345]	196	1	31%	32%	32%	32%	1%	34%	34%	34%	34%	0%	1%	1%	1%	1%	0%
His	[2345]	196	2	20%	20%	20%	20%	0%	7%	7%	7%	7%	0%	1%	2%	2%	2%	0%
His	[2345]	196	3	10%	10%	10%	10%	0%	1%	1%	1%	1%	0%	12%	13%	12%	12%	0%
His	[2345]	196	4	2%	2%	2%	2%	0%	0%	0%	1%	1%	0%	77%	76%	76%	76%	0%
lle	[23456]	200	0	45%	45%	45%	45%	0%	45%	44%	44%	44%	0%	ND	ND	ND	ND	ND
lle	[23456]	200	1	18%	18%	18%	18%	0%	38%	38%	38%	38%	0%	ND	ND	ND	ND	ND
lle	[23456]	200	2	22%	22%	22%	22%	0%	15%	15%	15%	15%	0%	ND	ND	ND	ND	ND
lle	[23456]	200	3	10%	10%	10%	10%	0%	2%	2%	2%	2%	0%	ND	ND	ND	ND	ND
lle	[23456]	200	4	3%	3%	3%	3%	0%	0%	0%	0%	0%	0%	ND	ND	ND	ND	ND
lle	[23456]	200	5	2%	1%	1%	2%	0%	0%	0%	0%	0%	0%	ND	ND	ND	ND	ND
Leu	[23456]	200	0	40%	41%	41%	41%	0%	38%	37%	37%	38%	0%	10%	9%	10%	10%	0%
Leu	[23456]	200	1	19%	19%	19%	19%	0%	39%	39%	39%	39%	0%	3%	2%	3%	3%	0%
Leu	[23456]	200	2	25%	24%	24%	25%	0%	19%	19%	19%	19%	0%	2%	2%	2%	2%	0%
Leu	[23456]	200	3	10%	10%	10%	10%	0%	4%	4%	4%	4%	0%	5%	5%	5%	5%	0%
Leu	[23456]	200	4	5%	5%	5%	5%	0%	0%	0%	0%	0%	0%	15%	14%	15%	14%	0%
Leu	[23456]	200	5	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	65%	67%	66%	66%	1%
Leu	[23456]	274	0	40%	41%	41%	40%	0%	38%	37%	37%	38%	0%	10%	9%	10%	10%	0%
Leu	[23456]	274	1	19%	19%	19%	19%	0%	39%	39%	39%	39%	0%	2%	2%	2%	2%	0%
Leu	[23456]	274	2	25%	24%	24%	24%	0%	19%	19%	19%	19%	0%	2%	2%	2%	2%	0%
Leu	[23456]	274	3	10%	10%	10%	10%	0%	4%	4%	4%	4%	0%	5%	5%	5%	5%	0%
Leu	[23456]	274	4	5%	5%	5%	5%	0%	0%	0%	0%	0%	0%	15%	14%	15%	15%	0%
Leu	[23456]	274	5	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	66%	67%	66%	66%	1%
Phe	[23456789]] 234	0	26%	26%	26%	26%	0%	33%	33%	33%	33%	0%	6%	5%	6%	6%	0%
Phe	[23456789]] 234	1	14%	14%	14%	14%	0%	40%	40%	41%	40%	0%	1%	0%	1%	0%	0%
Phe	[23456789]] 234	2	20%	20%	20%	20%	0%	21%	21%	21%	21%	0%	0%	0%	0%	0%	0%
Phe	[23456789]] 234	3	16%	16%	16%	16%	0%	5%	5%	5%	5%	0%	0%	0%	0%	0%	0%
Phe	[23456789]] 234	4	11%	11%	11%	11%	0%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Phe	[23456789]] 234	5	8%	8%	8%	8%	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	0%
Phe	[23456789]] 234	6	4%	4%	4%	4%	0%	0%	0%	0%	0%	0%	3%	3%	3%	3%	0%
Phe	[23456789]] 234	7	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	9%	9%	9%	9%	0%
Phe	[23456789]] 234	8	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	80%	80%	80%	80%	0%
Phe	[12]	302	0	68%	68%	68%	68%	0%	96%	96%	96%	96%	0%	8%	8%	8%	8%	0%
Phe	[12]	302	1	11%	12%	12%	12%	0%	4%	4%	4%	4%	0%	3%	3%	3%	3%	0%
Phe	[12]	302	2	20%	21%	21%	21%	0%	0%	0%	0%	0%	0%	89%	89%	89%	89%	0%
Phe	[12345678	§ 336	0	25%	25%	25%	25%	0%	33%	32%	32%	32%	0%	6%	6%	6%	6%	0%

Fr	ragments (↓)	(→)		2	8% U-13C	;			10	00% 1-13	С			9	8% U-130	2		
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	Rep 1	Rep 2	Rep 3	Avg	SD	Rep 1	Rep 2	Rep 3	Avg	SD
Phe	[12345678§	336	1	14%	14%	14%	14%	0%	40%	41%	41%	41%	0%	1%	1%	1%	1%	0%
Phe	[12345678§	336	2	14%	14%	14%	14%	0%	21%	22%	22%	22%	0%	0%	0%	0%	0%	0%
Phe	[12345678§	336	3	19%	19%	19%	19%	0%	5%	5%	5%	5%	0%	0%	0%	0%	0%	0%
Phe	[12345678§	336	4	11%	11%	11%	11%	0%	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%
Phe	[12345678§	336	5	8%	8%	8%	8%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%
Phe	[12345678§	336	6	6%	6%	6%	6%	0%	0%	0%	0%	0%	0%	2%	2%	2%	2%	0%
Phe	[12345678§	336	7	2%	2%	2%	2%	0%	0%	0%	0%	0%	0%	3%	3%	3%	3%	0%
Phe	[12345678§	336	8	1%	1%	1%	1%	0%	0%	0%	0%	0%	0%	10%	10%	10%	10%	0%
Phe	[12345678§	336	9	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	78%	78%	78%	78%	0%
Pro	[2345]	258	0	48%	48%	49%	48%	0%	48%	47%	47%	47%	0%	11%	10%	11%	10%	0%
Pro	[2345]	258	1	22%	22%	22%	22%	0%	38%	39%	38%	38%	0%	6%	6%	6%	6%	0%
Pro	[2345]	258	2	22%	22%	22%	22%	0%	13%	13%	13%	13%	0%	12%	12%	12%	12%	0%
Pro	[2345]	258	3	6%	6%	5%	6%	0%	1%	1%	2%	2%	0%	11%	11%	11%	11%	0%
Pro	[2345]	258	4	3%	3%	2%	3%	0%	0%	0%	0%	0%	0%	60%	61%	60%	6 <mark>0%</mark>	1%
Ser	[23]	288	0	61%	61%	61%	61%	0%	75%	75%	76%	76%	0%	5%	5%	5%	5%	0%
Ser	[23]	288	1	24%	24%	24%	24%	0%	24%	24%	24%	24%	0%	8%	8%	8%	8%	0%
Ser	[23]	288	2	15%	15%	15%	15%	0%	0%	0%	0%	0%	0%	87%	88%	87%	87%	0%
Ser	[12]	302	0	64%	65%	64%	64%	0%	95%		86%	90%	6%	6%	6%	6%	6%	0%
Ser	[12]	302	1	16%	15%	15%	16%	0%	5%		12%	8%	5%	8%	8%	8%	8%	0%
Ser	[12]	302	2	20%	20%	20%	20%	0%	0%		2%	1%	1%	86%	86%	86%	86%	0%
Ser	[23]	362	0	61%	60%	61%	61%	0%	75%	75%	76%	75 <mark>%</mark>	0%	5%	4%	5%	5%	0%
Ser	[23]	362	1	24%	25%	24%	25%	0%	24%	24%	24%	24%	0%	8%	8%	8%	8%	0%
Ser	[23]	362	2	15%	15%	15%	15%	0%	0%	0%	0%	0%	0%	88%	88%	88%	88%	0%
Ser	[123]	390	0	55%	55%	56%	55%	0%	72%	72%	72%	72%	0%	4%	4%	4%	4%	0%
Ser	[123]	390	1	20%	21%	20%	20%	0%	27%	27%	27%	27%	0%	3%	3%	3%	3%	0%
Ser	[123]	390	2	13%	13%	13%	13%	0%	1%	1%	1%	1%	0%	9%	8%	9%	9%	0%
Ser	[123]	390	3	12%	12%	12%	12%	0%	0%	0%	0%	0%	0%	84%	85%	84%	85%	0%
Thr	[234]	376	0	57%	56%	56%	56%	0%	58%	58%	58%	58%	0%	10%	9%	9%	9%	0%
Thr	[234]	376	1	21%	22%	23%	22%	1%	35%	35%	35%	35%	0%	7%	7%	7%	7%	0%
Thr	[234]	376	2	15%	14%	14%	14%	0%	7%	7%	7%	7%	0%	13%	13%	13%	13%	0%
Thr	[234]	376	3	7%	7%	7%	7%	0%	0%	0%	0%	0%	0%	70%	71%	70%	70%	1%
Thr	[1234]	404	0	48%	50%	49%	49%	1%	51%	51%	51%	51%	0%	8%	8%	8%	8%	0%
Thr	[1234]	404	1	22%	21%	22%	21%	1%	38%	38%	38%	38%	0%	4%	4%	4%	4%	0%
Thr	[1234]	404	2	17%	16%	16%	16%	0%	10%	10%	10%	10%	0%	8%	8%	8%	8%	0%
Thr	[1234]	404	3	9%	10%	10%	10%	0%	1%	1%	1%	1%	0%	14%	14%	14%	14%	0%
Thr	[1234]	404	4	3%	3%	3%	3%	0%	0%	0%	0%	0%	0%	65%	66%	66%	66%	1%
Tyr	[12]	302	0	68%	68%	69%	68%	0%	97%	97%	97%	97%	0%	10%	10%	10%	10%	0%
Tyr	[12]	302	1	11%	11%	11%	11%	0%	3%	3%	3%	3%	0%	3%	3%	3%	3%	0%
Tyr	[12]	302	2	21%	21%	21%	21%	0%	0%	0%	0%	0%	0%	87%	87%	87%	87%	0%
Val	[2345]	186	0	47%	48%	48%	48%	0%	45%	45%	45%	45%	0%	7%	7%	7%	7%	0%

Fi	ragments (↓) Labels ((→)		2	8% U-13C	;			10	00% 1-13	С			9	8% U-130)	
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	Rep 1	Rep 2	Rep 3	Avg	SD	Rep 1	Rep 2	Rep 3	Avg	SD
Val	[2345]	186	1	11%	11%	11%	11%	0%	40%	40%	41%	40%	0%	1%	1%	1%	1%	0%
Val	[2345]	186	2	30%	30%	30%	30%	0%	12%	12%	12%	12%	0%	4%	4%	4%	4%	0%
Val	[2345]	186	3	6%	6%	6%	6%	0%	2%	2%	2%	2%	0%	9%	9%	9%	9%	0%
Val	[2345]	186	4	5%	5%	5%	5%	0%	0%	0%	0%	0%	0%	79%	80%	79%	79%	0%
Val	[2345]	260	0	48%	48%	48%	48%	0%	46%	46%	45%	46%	0%	7%	7%	7%	7%	0%
Val	[2345]	260	1	12%	12%	12%	12%	0%	41%	41%	42%	41%	0%	1%	1%	1%	1%	0%
Val	[2345]	260	2	30%	30%	30%	30%	0%	12%	12%	12%	12%	0%	4%	4%	4%	4%	0%
Val	[2345]	260	3	4%	4%	4%	4%	0%	1%	1%	1%	1%	0%	8%	8%	8%	8%	0%
Val	[2345]	260	4	5%	5%	5%	5%	0%	0%	0%	0%	0%	0%	79%	80%	79%	80%	0%
Val	[12345]	288	0	45%	46%	46%	46%	0%	45%	45%	44%	45%	0%	7%	7%	7%	7%	0%
Val	[12345]	288	1	12%	13%	13%	13%	0%	41%	41%	41%	41%	0%	1%	1%	1%	1%	0%
Val	[12345]	288	2	19%	19%	19%	19%	0%	13%	13%	13%	13%	0%	2%	2%	2%	2%	0%
Val	[12345]	288	3	16%	15%	16%	16%	0%	1%	1%	1%	1%	0%	4%	4%	4%	4%	0%
Val	[12345]	288	4	3%	3%	3%	3%	0%	0%	0%	0%	0%	0%	8%	8%	8%	8%	0%
Val	[12345]	288	5	5%	4%	4%	4%	0%	0%	0%	0%	0%	0%	78%	79%	78%	78%	1%
Val	[12]	302	0	65%	65%	65%	65%	0%	86%	86%	86%	86%	0%	11%	11%	11%	11%	0%
Val	[12]	302	1	12%	13%	12%	12%	0%	12%	12%	12%	12%	0%	4%	4%	4%	4%	0%
Val	[12]	302	2	23%	22%	23%	23%	0%	2%	2%	2%	2%	0%	85%	85%	85%	85%	0%

Fr	ragments (↓) Labels ((→)		98% U-'	13C, unde	er light						98% U- 1	I3C, unde	er dark		
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD
Ala	[23]	232	0	1%	1%	1%	1%	0%	97%	0%	3%	3%	2%	2%	0%	95%	0%
Ala	[23]	232	1	3%	4%	3%	3%	1%	0%	0%	5%	6%	6%	6%	0%	0%	0%
Ala	[23]	232	2	96%	95%	96%	96%	1%	0%	0%	92%	92%	92%	92%	0%	0%	0%
Ala	[123]	260	0	1%	1%	1%	1%	0%	97%	0%	2%	2%	2%	2%	0%	94%	0%
Ala	[123]	260	1	1%	1%	1%	1%	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%
Ala	[123]	260	2	4%	5%	4%	4%	1%	0%	0%	7%	7%	7%	7%	0%	0%	0%
Ala	[123]	260	3	94%	93%	93%	93%	1%	0%	0%	89%	89%	89%	89%	0%	0%	0%
Asp	[12]	302	0	5%	5%	5%	5%	0%	91%	0%	6%	6%	5%	6%	1%	89%	1%
Asp	[12]	302	1	7%	8%	7%	7%	0%	0%	0%	10%	9%	10%	10%	1%	0%	0%
Asp	[12]	302	2	88%	88%	88%	88%	0%	0%	0%	84%	85%	86%	85%	1%	0%	0%
Asp	[234]	316	0	2%	2%	3%	2%	0%	92%	1%	2%	2%	0%	2%	1%	90%	2%
Asp	[234]	316	1	3%	3%	4%	4%	0%	0%	0%	5%	7%	5%	6%	1%	0%	0%
Asp	[234]	316	2	8%	10%	10%	9%	1%	0%	0%	14%	12%	11%	12%	1%	0%	0%
Asp	[234]	316	3	86%	84%	84%	85%	1%	0%	0%	79%	79%	83%	80%	2%	0%	0%
Asp	[234]	390	0	2%	2%	3%	3%	0%	92%	0%	2%	0%	2%	1%	1%	91%	2%
Asp	[234]	390	1	3%	3%	3%	3%	0%	0%	0%	5%	3%	4%	4%	1%	0%	0%
Asp	[234]	390	2	9%	10%	9%	10%	1%	0%	0%	13%	12%	11%	12%	1%	0%	0%
Asp	[234]	390	3	85%	84%	85%	85%	0%	0%	0%	79%	85%	84%	83%	3%	0%	0%
Asp	[1234]	418	0	2%	2%	2%	2%	0%	91%	0%	2%	1%	1%	2%	0%	91%	1%
Asp	[1234]	418	1	1%	1%	2%	1%	0%	0%	0%	2%	2%	1%	2%	0%	0%	0%
Asp	[1234]	418	2	5%	4%	4%	5%	0%	0%	0%	5%	7%	5%	6%	1%	0%	0%
Asp	[1234]	418	3	12%	12%	13%	12%	0%	0%	0%	14%	12%	14%	13%	1%	0%	0%
Asp	[1234]	418	4	80%	81%	79%	80%	1%	0%	0%	77%	77%	78%	78%	0%	0%	0%
Glu	[2345]	272	0	1%	1%	1%	1%	0%	93%	0%	2%	2%	3%	2%	1%	86%	3%
Glu	[2345]	272	1	1%	1%	2%	1%	0%	0%	0%	2%	2%	6%	3%	2%	0%	0%
Glu	[2345]	272	2	5%	5%	5%	5%	0%	0%	0%	9%	10%	11%	10%	1%	0%	0%
Glu	[2345]	272	3	9%	10%	9%	9%	1%	0%	0%	15%	17%	15%	16%	1%	0%	0%
Glu	[2345]	272	4	84%	83%	83%	83%	1%	0%	0%	72%	68%	65%	69%	4%	0%	0%
Glu	[2345]	330	0	1%	1%	1%	1%	0%	93%	0%	3%	3%	0%	2%	2%	86%	2%
Glu	[2345]	330	1	1%	1%	2%	1%	0%	0%	0%	2%	2%	6%	3%	2%	0%	0%
Glu	[2345]	330	2	6%	5%	6%	6%	0%	0%	0%	10%	15%	15%	13%	3%	0%	0%
Glu	[2345]	330	3	9%	10%	9%	9%	0%	0%	0%	13%	13%	15%	13%	1%	0%	0%
Glu	[2345]	330	4	83%	82%	82%	83%	1%	0%	0%	73%	68%	64%	68%	4%	0%	0%
Glu	[12345]	432	0	1%	1%	1%	1%	0%	93%	0%	1%	0%	3%	1%	1%	88%	3%
Glu	[12345]	432	1	1%	1%	1%	1%	0%	0%	0%	2%	1%	2%	2%	1%	0%	0%
Glu	[12345]	432	2	2%	2%	2%	2%	0%	0%	0%	4%	2%	5%	3%	1%	0%	0%
Glu	[12345]	432	3	6%	6%	6%	6%	0%	0%	0%	9%	11%	12%	11%	2%	0%	0%
Glu	[12345]	432	4	11%	12%	11%	11%	0%	0%	0%	15%	17%	15%	16%	1%	0%	0%
Glu	[12345]	432	5	80%	79%	79%	79%	1%	0%	0%	70%	69%	63%	67%	4%	0%	0%
Gly	[2]	218	0	7%	8%	8%	8%	0%	92%	0%	8%	7%	7%	7%	0%	93%	0%

Fr	agments (↓) Labels ((→)		98% U-′	13C, unde	er light						98% U-1	13C, unde	er dark		
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD
Gly	[2]	218	1	93%	92%	92%	92%	0%	0%	0%	92%	93%	93%	93%	0%	0%	0%
Gly	[12]	246	0	6%	5%	6%	6%	0%	91%	0%	6%	5%	5%	5%	0%	91%	1%
Gly	[12]	246	1	6%	7%	6%	6%	0%	0%	0%	7%	7%	7%	7%	0%	0%	0%
Gly	[12]	246	2	88%	88%	88%	88%	0%	0%	0%	87%	88%	88%	88%	1%	0%	0%
His	[2345]	196	0	7%	7%	8%	8%	1%	88%	1%	6%	6%	7%	6%	0%	89%	1%
His	[2345]	196	1	1%	1%	1%	1%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
His	[2345]	196	2	2%	2%	2%	2%	0%	0%	0%	3%	2%	2%	2%	0%	0%	0%
His	[2345]	196	3	11%	13%	11%	11%	1%	0%	0%	13%	13%	13%	13%	0%	0%	0%
His	[2345]	196	4	79%	77%	78%	78%	1%	0%	0%	77%	78%	77%	77%	1%	0%	0%
His	[23456]	338	0	8%	8%	9%	8%	1%	88%	1%	6%	7%	7%	7%	0%	89%	1%
His	[23456]	338	1	1%	1%	1%	1%	0%	0%	0%	-1%	1%	1%	0%	1%	0%	0%
His	[23456]	338	2	1%	1%	1%	1%	0%	0%	0%	1%	1%	0%	0%	1%	0%	0%
His	[23456]	338	3	2%	3%	3%	3%	0%	0%	0%	2%	4%	5%	4%	2%	0%	0%
His	[23456]	338	4	10%	11%	9%	10%	1%	0%	0%	12%	10%	11%	11%	1%	0%	0%
His	[23456]	338	5	78%	77%	77%	78%	0%	0%	0%	80%	78%	77%	78%	1%	0%	0%
His	[123456]	440	0	7%	7%	8%	8%	1%	88%	1%	6%	7%	6%	6%	1%	90%	0%
His	[123456]	440	1	1%	1%	1%	1%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%
His	[123456]	440	2	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
His	[123456]	440	3	1%	1%	1%	1%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
His	[123456]	440	4	2%	2%	2%	2%	0%	0%	0%	2%	1%	2%	2%	1%	0%	0%
His	[123456]	440	5	11%	11%	11%	11%	0%	0%	0%	11%	12%	11%	12%	0%	0%	0%
His	[123456]	440	6	78%	78%	77%	77%	0%	0%	0%	79%	78%	79%	79%	1%	0%	0%
lle	[23456]	200	0	9%	8%	9%	9%	0%	78%	1%	8%	8%	7%	7%	0%	78%	1%
lle	[23456]	200	1	2%	2%	2%	2%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
lle	[23456]	200	2	8%	8%	9%	9%	0%	0%	0%	8%	8%	9%	8%	1%	0%	0%
lle	[23456]	200	3	9%	9%	10%	10%	0%	0%	0%	11%	11%	12%	12%	1%	0%	0%
lle	[23456]	200	4	14%	15%	14%	14%	1%	0%	0%	17%	18%	19%	18%	1%	0%	0%
lle	[23456]	200	5	58%	57%	56%	57%	1%	0%	0%	54%	55%	51%	53%	2%	0%	0%
lle	[23456]	274	0	8%	8%	9%	8%	0%	79%	1%	8%	7%	7%	7%	0%	78%	1%
lle	[23456]	274	1	2%	2%	2%	2%	0%	0%	0%	1%	1%	2%	1%	0%	0%	0%
lle	[23456]	274	2	8%	8%	9%	8%	0%	0%	0%	8%	8%	9%	8%	0%	0%	0%
lle	[23456]	274	3	9%	9%	10%	9%	0%	0%	0%	11%	11%	12%	11%	1%	0%	0%
lle	[23456]	274	4	14%	15%	14%	14%	1%	0%	0%	17%	17%	19%	18%	1%	0%	0%
lle	[23456]	274	5	59%	58%	57%	58%	1%	0%	0%	54%	55%	52%	54%	2%	0%	0%
lle	[12]	302	0	27%	27%	27%	27%	0%	68%	1%	27%	27%	27%	27%	0%	68%	0%
lle	[12]	302	1	10%	10%	10%	10%	0%	0%	0%	10%	10%	11%	11%	1%	0%	0%
lle	[12]	302	2	64%	63%	63%	63%	1%	0%	0%	63%	63%	62%	63%	1%	0%	0%
Leu	[23456]	200	0	7%	7%	7%	7%	0%	86%	0%	6%	6%	6%	6%	0%	85%	1%
Leu	[23456]	200	1	2%	2%	2%	2%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
Leu	[23456]	200	2	2%	2%	2%	2%	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%

Fr	agments ((→)		98% U-′	13C, unde	er light						98% U-1	13C, unde	r dark			
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD
Leu	[23456]	200	3	4%	5%	4%	4%	0%	0%	0%	5%	5%	6%	5%	0%	0%	0%
Leu	[23456]	200	4	12%	14%	12%	13%	1%	0%	0%	21%	21%	24%	22%	2%	0%	0%
Leu	[23456]	200	5	73%	71%	71%	72%	1%	0%	0%	64%	64%	60%	63%	2%	0%	0%
Leu	[23456]	274	0	7%	7%	7%	7%	0%	86%	0%	6%	6%	6%	6%	0%	85%	1%
Leu	[23456]	274	1	2%	2%	2%	2%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
Leu	[23456]	274	2	2%	2%	2%	2%	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%
Leu	[23456]	274	3	4%	4%	4%	4%	0%	0%	0%	5%	5%	5%	5%	0%	0%	0%
Leu	[23456]	274	4	12%	14%	13%	13%	1%	0%	0%	21%	21%	24%	22%	2%	0%	0%
Leu	[23456]	274	5	73%	71%	72%	72%	1%	0%	0%	65%	65%	61%	63%	2%	0%	0%
Lys	[23456]	329	0	7%	13%	10%	10%	3%	77%	0%	9%	4%	14%	9%	5%	77%	3%
Lys	[23456]	329	1	5%	3%	4%	4%	1%	0%	0%	3%	7%	0%	3%	4%	0%	0%
Lys	[23456]	329	2	7%	7%	2%	6%	3%	0%	0%	4%	5%	6%	5%	1%	0%	0%
Lys	[23456]	329	3	11%	13%	14%	13%	1%	0%	0%	18%	9%	12%	13%	5%	0%	0%
Lys	[23456]	329	4	14%	16%	16%	15%	1%	0%	0%	12%	16%	16%	15%	2%	0%	0%
Lys	[23456]	329	5	56%	47%	55%	53%	5%	0%	0%	54%	59%	52%	55%	3%	0%	0%
Lys	[123456]	431	0	7%	13%	11%	10%	3%	78%	2%	6%	6%	7%	6%	0%	76%	2%
Lys	[123456]	431	1	2%	2%	0%	1%	2%	0%	0%	2%	3%	0%	2%	1%	0%	0%
Lys	[123456]	431	2	2%	2%	3%	2%	0%	0%	0%	1%	3%	1%	1%	1%	0%	0%
Lys	[123456]	431	3	5%	6%	5%	6%	1%	0%	0%	4%	4%	7%	5%	2%	0%	0%
Lys	[123456]	431	4	14%	33%	18%	21%	10%	0%	0%	28%	31%	37%	32%	5%	0%	0%
Lys	[123456]	431	5	18%	9%	12%	13%	5%	0%	0%	13%	8%	15%	12%	4%	0%	0%
Lys	[123456]	431	6	52%	34%	51%	46%	10%	0%	0%	47%	45%	33%	42%	7%	0%	0%
Lys	[123456]	488	0	7%	10%	8%	9%	2%	81%	3%	9%	1%	9%	6%	5%	81%	4%
Lys	[123456]	488	1	1%	1%	0%	1%	1%	0%	0%	1%	6%	2%	3%	3%	0%	0%
Lys	[123456]	488	2	4%	-1%	2%	2%	3%	0%	0%	0%	9%	2%	3%	4%	0%	0%
Lys	[123456]	488	3	6%	7%	5%	6%	1%	0%	0%	6%	1%	10%	6%	5%	0%	0%
Lys	[123456]	488	4	11%	11%	7%	9%	3%	0%	0%	11%	5%	8%	8%	3%	0%	0%
Lys	[123456]	488	5	7%	18%	11%	12%	6%	0%	0%	13%	5%	21%	13%	8%	0%	0%
Lys	[123456]	488	6	65%	53%	67%	61%	8%	0%	0%	60%	74%	48%	61%	13%	0%	0%
Met	[2345]	218	0	2%	2%	2%	2%	0%	88%	0%	3%	3%	3%	3%	0%	84%	1%
Met	[2345]	218	1	6%	6%	6%	6%	0%	0%	0%	7%	7%	8%	7%	1%	0%	0%
Met	[2345]	218	2	4%	5%	4%	4%	0%	0%	0%	6%	7%	8%	7%	1%	0%	0%
Met	[2345]	218	3	13%	14%	13%	13%	1%	0%	0%	15%	15%	16%	15%	1%	0%	0%
Met	[2345]	218	4	75%	73%	75%	74%	1%	0%	0%	69%	68%	66%	68%	2%	0%	0%
Met	[2345]	292	0	1%	2%	2%	2%	0%	89%	0%	1%	2%	1%	2%	0%	87%	1%
Met	[2345]	292	1	5%	5%	5%	5%	0%	0%	0%	6%	5%	7%	6%	1%	0%	0%
Met	[2345]	292	2	4%	4%	4%	4%	0%	0%	0%	6%	6%	8%	6%	1%	0%	0%
Met	[2345]	292	3	14%	15%	14%	14%	1%	0%	0%	15%	15%	16%	15%	1%	0%	0%
Met	[2345]	292	4	75%	75%	75%	75%	0%	0%	0%	73%	73%	68%	71%	3%	0%	0%
Met	[12345]	320	0	1%	2%	1%	1%	1%	89%	0%	1%	2%	2%	1%	0%	88%	2%

Fr	agments (↓)) Labels ((→)		98% U-'	13C, unde	er light						98% U-1	3C, unde	r dark		
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD
Met	[12345]	320	1	5%	4%	5%	4%	0%	0%	0%	4%	2%	5%	4%	1%	0%	0%
Met	[12345]	320	2	2%	2%	3%	2%	0%	0%	0%	2%	3%	5%	3%	2%	0%	0%
Met	[12345]	320	3	4%	5%	4%	5%	0%	0%	0%	5%	7%	8%	7%	2%	0%	0%
Met	[12345]	320	4	14%	16%	14%	14%	1%	0%	0%	17%	17%	16%	17%	0%	0%	0%
Met	[12345]	320	5	74%	72%	74%	73%	1%	0%	0%	72%	70%	64%	68%	4%	0%	0%
Phe	[23456789]	234	0	3%	4%	4%	4%	0%	94%	0%	2%	2%	2%	2%	0%	95%	0%
Phe	[23456789]	234	1	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Phe	[23456789]	234	2	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Phe	[23456789]	234	3	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Phe	[23456789]	234	4	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Phe	[23456789]	234	5	1%	1%	1%	1%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
Phe	[23456789]	234	6	3%	3%	3%	3%	0%	0%	0%	4%	4%	4%	4%	0%	0%	0%
Phe	[23456789]	234	7	8%	9%	8%	8%	1%	0%	0%	10%	10%	10%	10%	0%	0%	0%
Phe	[23456789]	234	8	84%	82%	84%	83%	1%	0%	0%	82%	83%	82%	82%	0%	0%	0%
Phe	[12]	302	0	5%	5%	6%	5%	0%	93%	0%	4%	4%	4%	4%	0%	94%	0%
Phe	[12]	302	1	3%	3%	3%	3%	0%	0%	0%	3%	3%	3%	3%	0%	0%	0%
Phe	[12]	302	2	92%	91%	91%	92%	0%	0%	0%	93%	93%	92%	93%	0%	0%	0%
Phe	[123456789	336	0	4%	4%	4%	4%	0%	93%	0%	2%	2%	2%	2%	0%	95%	0%
Phe	[123456789	336	1	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Phe	[123456789	336	2	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Phe	[123456789	336	3	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Phe	[123456789	336	4	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Phe	[123456789	336	5	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%
Phe	[123456789	336	6	2%	2%	2%	2%	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%
Phe	[123456789	336	7	2%	2%	2%	2%	0%	0%	0%	3%	3%	3%	3%	0%	0%	0%
Phe	[123456789	336	8	9%	10%	9%	9%	1%	0%	0%	10%	10%	11%	10%	0%	0%	0%
Phe	[123456789	336	9	82%	81%	82%	82%	1%	0%	0%	81%	82%	81%	81%	0%	0%	0%
Pro	[2345]	184	0	8%	8%	9%	8%	0%	79%	0%	8%	7%	8%	8%	0%	76%	2%
Pro	[2345]	184	1	5%	5%	6%	5%	0%	0%	0%	6%	6%	8%	7%	1%	0%	0%
Pro	[2345]	184	2	11%	11%	12%	12%	0%	0%	0%	14%	14%	16%	15%	1%	0%	0%
Pro	[2345]	184	3	11%	11%	10%	11%	0%	0%	0%	14%	14%	15%	15%	0%	0%	0%
Pro	[2345]	184	4	64%	64%	63%	64%	1%	0%	0%	58%	58%	53%	56%	3%	0%	0%
Pro	[2345]	258	0	5%	4%	5%	4%	0%	87%	0%	3%	4%	4%	4%	0%	84%	1%
Pro	[2345]	258	1	3%	3%	3%	3%	0%	0%	0%	4%	4%	5%	4%	1%	0%	0%
Pro	[2345]	258	2	8%	8%	8%	8%	0%	0%	0%	11%	11%	12%	11%	1%	0%	0%
Pro	[2345]	258	3	10%	10%	9%	10%	1%	0%	0%	13%	14%	14%	14%	0%	0%	0%
Pro	[2345]	258	4	74%	75%	75%	74%	0%	0%	0%	68%	68%	66%	67%	1%	0%	0%
Ser	[23]	288	0	2%	2%	2%	2%	0%	94%	0%	2%	2%	2%	2%	0%	95%	0%
Ser	[23]	288	1	7%	8%	7%	8%	0%	0%	0%	6%	7%	6%	6%	0%	0%	0%
Ser	[23]	288	2	91%	90%	91%	91%	0%	0%	0%	92%	91%	92%	92%	1%	0%	0%

Fi	ragments (↓) Labels ((→)		98% U-'	13C, unde	er light						98% U-1	13C, unde	r dark		
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD
Ser	[12]	302	0	3%	4%	4%	4%	0%	93%	1%	4%	3%	4%	4%	0%	92%	0%
Ser	[12]	302	1	6%	9%	7%	8%	2%	0%	0%	9%	10%	9%	9%	0%	0%	0%
Ser	[12]	302	2	90%	87%	89%	89%	2%	0%	0%	87%	87%	87%	87%	0%	0%	0%
Ser	[23]	362	0	2%	2%	2%	2%	0%	95%	0%	2%	2%	2%	2%	0%	95%	0%
Ser	[23]	362	1	7%	8%	7%	7%	0%	0%	0%	6%	6%	6%	6%	0%	0%	0%
Ser	[23]	362	2	92%	91%	91%	91%	0%	0%	0%	92%	92%	92%	92%	0%	0%	0%
Ser	[123]	390	0	1%	1%	2%	2%	0%	94%	0%	2%	2%	2%	2%	0%	94%	0%
Ser	[123]	390	1	2%	2%	2%	2%	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%
Ser	[123]	390	2	7%	9%	8%	8%	1%	0%	0%	8%	7%	7%	7%	1%	0%	0%
Ser	[123]	390	3	89%	88%	88%	88%	1%	0%	0%	88%	89%	90%	89%	1%	0%	0%
Thr	[234]	376	0	7%	7%	8%	7%	0%	84%	1%	7%	8%	7%	7%	1%	83%	3%
Thr	[234]	376	1	7%	7%	7%	7%	0%	0%	0%	9%	-1%	10%	6%	6%	0%	0%
Thr	[234]	376	2	12%	12%	12%	12%	0%	0%	0%	16%	17%	18%	17%	1%	0%	0%
Thr	[234]	376	3	74%	74%	72%	73%	1%	0%	0%	68%	75%	65%	69%	5%	0%	0%
Thr	[1234]	404	0	7%	6%	7%	7%	0%	83%	1%	6%	7%	7%	6%	0%	81%	2%
Thr	[1234]	404	1	3%	3%	3%	3%	0%	0%	0%	5%	4%	6%	5%	1%	0%	0%
Thr	[1234]	404	2	7%	7%	8%	7%	0%	0%	0%	10%	9%	12%	10%	1%	0%	0%
Thr	[1234]	404	3	13%	14%	14%	14%	0%	0%	0%	15%	17%	16%	16%	1%	0%	0%
Thr	[1234]	404	4	69%	69%	68%	69%	1%	0%	0%	65%	63%	59%	62%	3%	0%	0%
Tyr	[12]	302	0	8%	8%	8%	8%	0%	91%	0%	7%	7%	7%	7%	0%	91%	0%
Tyr	[12]	302	1	3%	3%	2%	3%	1%	0%	0%	4%	3%	3%	4%	0%	0%	0%
Tyr	[12]	302	2	90%	89%	90%	90%	0%	0%	0%	89%	89%	89%	89%	0%	0%	0%
Tyr	[23456789]	364	0	6%	6%		6%	0%	90%	0%	5%	5%	5%	5%	0%	92%	1%
Tyr	[23456789]	364	1	1%	1%		1%	0%	0%	0%	1%	0%	1%	1%	0%	0%	0%
Tyr	[23456789]	364	2	0%	0%		0%	0%	0%	0%	0%	1%	0%	0%	1%	0%	0%
Tyr	[23456789]	364	3	0%	0%		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Tyr	[23456789]	364	4	0%	0%		0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%
Tyr	[23456789]	364	5	1%	1%		1%	1%	0%	0%	1%	1%	1%	1%	0%	0%	0%
Tyr	[23456789]	364	6	4%	4%		4%	0%	0%	0%	5%	2%	3%	3%	2%	0%	0%
Tyr	[23456789]	364	7	11%	9%		10%	1%	0%	0%	10%	12%	8%	10%	2%	0%	0%
Tyr	[23456789]	364	8	78%	78%		78%	0%	0%	0%	78%	78%	82%	79%	2%	0%	0%
Tyr	[12345678	466	0	5%	5%		5%	0%	92%	0%	6%		4%	5%	1%	91%	1%
Tyr	[12345678	466	1	1%	1%		1%	0%	0%	0%	1%		1%	1%	1%	0%	0%
Tyr	[12345678	466	2	-1%	0%		0%	1%	0%	0%	0%		0%	0%	0%	0%	0%
Tyr	[12345678	466	3	1%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%
Tyr	[12345678	466	4	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%
Tyr	[12345678	466	5	1%	0%	1	0%	0%	0%	0%	0%		0%	0%	0%	0%	0%
Tyr	[12345678	466	6	0%	1%	1	1%	1%	0%	0%	2%		2%	2%	0%	0%	0%
Tyr	[12345678	466	7	3%	3%		3%	0%	0%	0%	3%		3%	3%	0%	0%	0%
Tyr	[12345678	466	8	9%	9%		9%	0%	0%	0%	11%		9%	10%	1%	0%	0%

Fr	agments (↓) Labels ((→)		98% U-	13C, und	er light						98% U-1	13C, unde	r dark		
AA	frag	MW-frag	n(m+n)	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD	Rep 1	Rep 2	Rep 3	Avg	SD	13C Enr	SD
Tyr	[123456789	466	9	81%	80%		80%	1%	0%	0%	78%		79%	78%	1%	0%	0%
Val	[2345]	186	0	4%	4%	5%	5%	0%	91%	0%	5%	5%	5%	5%	0%	90%	0%
Val	[2345]	186	1	1%	1%	1%	1%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
Val	[2345]	186	2	3%	3%	4%	3%	0%	0%	0%	4%	4%	4%	4%	0%	0%	0%
Val	[2345]	186	3	7%	10%	7%	8%	1%	0%	0%	10%	10%	11%	11%	1%	0%	0%
Val	[2345]	186	4	84%	82%	83%	83%	1%	0%	0%	80%	80%	79%	80%	1%	0%	0%
Val	[2345]	260	0	4%	5%	5%	5%	0%	91%	0%	5%	5%	5%	5%	0%	90%	0%
Val	[2345]	260	1	1%	1%	1%	1%	0%	0%	0%	1%	1%	1%	1%	0%	0%	0%
Val	[2345]	260	2	3%	3%	4%	3%	0%	0%	0%	4%	4%	4%	4%	0%	0%	0%
Val	[2345]	260	3	6%	7%	7%	7%	1%	0%	0%	8%	8%	8%	8%	0%	0%	0%
Val	[2345]	260	4	85%	84%	84%	84%	1%	0%	0%	83%	82%	82%	82%	0%	0%	0%
Val	[12345]	288	0	5%	4%	5%	5%	0%	91%	0%	5%	5%	5%	5%	0%	90%	0%
Val	[12345]	288	1	1%	1%	1%	1%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%
Val	[12345]	288	2	1%	2%	2%	2%	0%	0%	0%	2%	2%	2%	2%	0%	0%	0%
Val	[12345]	288	3	3%	3%	3%	3%	0%	0%	0%	4%	3%	4%	4%	0%	0%	0%
Val	[12345]	288	4	6%	8%	7%	7%	1%	0%	0%	8%	8%	9%	8%	0%	0%	0%
Val	[12345]	288	5	84%	82%	83%	83%	1%	0%	0%	81%	81%	80%	81%	1%	0%	0%
Val	[12]	302	0	7%	7%	8%	8%	0%	91%	0%	9%	9%	9%	9%	0%	90%	1%
Val	[12]	302	1	3%	4%	3%	4%	0%	0%	0%	0%	3%	4%	2%	3%	0%	0%
Val	[12]	302	2	89%	89%	89%	89%	1%	0%	0%	91%	88%	87%	89%	2%	0%	0%

Table S3. Metabolic fluxes estimated through the four metabolic models.

l	so_corr(U)		(Gluc_dilu			lso_corr(V)			AA_in	
Reaction	Avg	SD	Reaction	Avg	SD				Reaction	Avg	SD
glci	0.5604	0.0080	glci	0.5508	0.0017	glci	0.5713	0.0123	glci	<mark>0</mark> .5698	0.0105
CO2in	0.1594	0.0046	CO2in	0.1283	0.0058	CO2in	0.9 <mark>024</mark>	0.0687	CO2in	0.1862	0.1570
CO2out	1.9886	0.0697	CO2out	2.0405	0.0407	CO2out	3.0591	0.1274	CO2out	2.4669	0.1774
									CO2exf	-0.1429	0.1573
									CO2exb	0.7763	0.2601
						Alai	0.0002	0.0001	Alai	0.0018	0.0017
						aspi	0.0011	0.0001	aspi	0.0016	0.0004
						glui	0.0012	0.0001	glui	0.0011	0.0012
						Glyi	0.0001	0.0001	Glyi	0.0003	0.0003
						hisi	0.0001	0.0000	hisi	0.0001	0.0000
						lle	0.0010	0.0001	lle	0.0008	0.0001
						Meti	0.0001	0.0001	Meti	0.0001	0.0001
						seri	0.0007	0.0001	seri	0.0007	0.0003
						thri	0.0001	0.0001	thri	0.0003	0.0001
						Vali	0.0021	0.0002	Vali	0.0016	0.0004
						leu	0.0025	0.0001	leu	0.0019	0.0001
									pyrpi	0.0008	0.0002
									OAAmi	0.0025	0.0015
									pyr	0.0009	0.0004
									suci	0.0078	0.0013
									starchi	0.0044	0.0006
									T3Ppi	0.0024	0.0012
									E4Ppi	0.0014	0.0008
									ACApi	0.0094	0.0011
			alcina	0.0237	0.0002				ACAin	0.0083	0.0031
			alcc2	0.0237	0.0002				ACAtf	0.0083	0.0031
paif	0.1709	0.0508	paif	0.1625	0.0457	paif	0.3924	0.0846	paif	0.3577	0.1008
paib	0.9334	0.0514	paib	0.8852	0.0778	paib	0.4740	0.2885	paib	0.3712	0.3095
aepdh	0.2430	0.0945	aepdh	0.3683	0.0487	aeodh	0.1092	0.0657	aeodh	0.1651	0.0709
tktAf	0.0674	0.0217	tktAf	0.1051	0.0220	tktAf	-0.0459	0.0356	tktAf	-0.0130	0.0647
tktAb	0.5347	0.2868	tktAb	0.2864	0.2411	tktAb	0.0880	0.1443	tktAb	0.3276	0.3125
talf	0.0674	0.0217	talf	0.1051	0.0220	talf	-0.0459	0.0356	talf	-0.0130	0.0647
talb	0.5207	0.3118	talb	0.2933	0.2745	talb	0.6646	0.3356	talb	0.7689	0.2946
tktBf	0.0674	0.0217	tktBf	0.1051	0.0220	tktBf	-0.0532	0.0341	tktBf	-0.0184	0.0647
tktBb	0.3079	0.2150	tktBb	0.2863	0.2506	tktBb	0.9373	0.0405	tktBb	0.7768	0.2193
nfk	0.2865	0.0480	nfk	0.3531	0.0607	nfk	0.2667	0.0481	n fk	0.3071	0.0659
f16bp	0.9248	0.0681	f16bp	0.6208	0.2342	f16bp	0.7474	0.0849	f16bp	0.5756	0.1958
pvrf	0.6546	0.0373	ovrf	0.0000	0.0000	pvrf	0.8826	0.2968	pvrf	0.8414	0.2060
a6pt	0.1464	0.1138	a6pt	0.0436	0.0700	a6pt	0.0697	0.0901	a6pt	0.0470	0.0591
a6ptb	0.5937	0.2248	a6ptb	0.6100	0.3604	a6ptb	0.4748	0.2185	a6ptb	0.2965	0.2715
paifp	-0.5388	0.1164	paifp	-0.0267	0.0694	paifp	-0.7036	0.1867	paifp	-0.4002	0.2359
paibp	0.3406	0.2888	paibp	0.5990	0.3288	paibp	0.8579	0.1119	paipp	0.8545	0.2269
aepdhp	0.6635	0.0967	aepdhp	0.0473	0.0070	aepdhp	0.7531	0.1938	aepdhp	0.4301	0.2293
tktAfn	0.2367	0.0437	tktAfn	0.0355	0.0321	tktAfn	0.3354	0.0757	tktAfn	0 2128	0 1120
tktAbp	0 1546	0 1931	tktAbp	0.3758	0 2754	tktAbp	0.9889	0.0203	tktAbp	0.9950	0.0120
talfn	0.2367	0.1001	talfn	0.0355	0.0321	talfn	0.3354	0.0200	talfn	0.2128	0.0120
talbo	0 2584	0 2911	talbo	0 5037	0.3291	talbo	0.9687	0.0331	talbo	0.9847	0.0264
tktRfn	0 22007	0.0434	tktBfn	0.0007	0.0201	tktBfn	0.3354	0.0757	tktBfn	0.2128	0.1120
tktBhn	0.0960	0 1268	tktBhn	0 4942	0.3271	tktBhn	0 7960	0 2242	tktBhn	0.2120	0 2291
nfkn	-0 0724	0.1200	nfkp	0.4342	0.0211	nfkn	0.0254	0.2242	nfkn	0.0000	0.2291
f16bpp	0.07695	0.0000	pirp f16bpp	0.0307	0.0090	f16bpp	0.0204	0.0004	f16bpp	0.0204	0.0004
nenfn	0.7000	0.1209	nenfn	0.0004	0.3209	neofo	0.1709	0.2002	nenfn	0.3931	0.2402
hehih	0.0749	0.0301	hehih	0.9111	0.0000	hehih	0.2422	0.2400	hehih	0.1374	0.1409

Table S3. Metabolic fluxes estimated through the four metabolic models.

ls	so_corr(U)			Gluc_dilu		1	lso_corr(V)		_	AA_in	
Reaction	Avg	SD	Reaction	Avg	SD				Reaction	Avg	SD
pdhp	0.2296	0.0037	pdhp	0.2312	0.0026	pdhp	0.2266	0.0030	pdhp	0.2164	0.0033
t3pt	-0.0176	0.1039	t3pt	-0.8401	0.1548	t3pt	0.0168	0.2477	t3pt	0.1159	0.1636
t3pb	0.2802	0.2850	t3pb	0.0486	0.1576	t3pb	0.1761	0.2525	t3pb	0.0944	0.1899
P5Ptf	0.0410	0.1280	P5Ptf	0.0531	0.0973	P5Ptf	0.2542	0.0882	P5Ptf	0.2096	0.1437
P5Ptr	<mark>0</mark> .6841	0.3162	P5Ptr	0.5951	0.3308	P5Ptr	0.0422	0.0645	P5Ptr	0.0481	0.1297
pyrtpf	0.2223	0.0314	pyrtpf	-0.6121	0.0586	pyrtpf	0.0414	0.2440	pyrtpf	0.1601	0.1471
pyrtpr	0.4049	0.2644	pyrtpr	0.4663	0.3775	pyrtpr	0.8668	0.2177	pyrtpr	0.7409	0.3746
pdh	0.3211	0.0385	pdh	0.5022	0.0204	pdh	0.3685	0.0436	pdh	<mark>0</mark> .4844	0.0616
citdh	0.3211	0.0385	citdh	0.5022	0.0204	citdh	0.3685	0.0436	citdh	<mark>0</mark> .4927	0.0627
akgdh	0.2749	0.0394	akgdh	0.4553	0.0216	akgdh	0.3389	0.0427	akgdh	0.4623	0.0626
sdhf	0.2749	0.0394	sdhf	0.4553	0.0216	sdhf	0.3389	0.0427	sdhf	0.4735	0.0586
sdhr	0.9 <mark>638</mark>	0.0257	sdhr	0.9 <mark>366</mark>	0.0442	sdhr	0.9859	0.0154	sdhr	0.9596	0.0378
sdhs	0.6807	0.2441	sdhs	<mark>0</mark> .6774	0.2549	sdhs	0.6570	0.3330	sdhs	0.3905	0.3322
mdhf	0.3283	0.0444	mdhf	0.4920	0.0465	mdhf	0.6244	0.2189	mdhf	0.4902	0.1463
mdhr	0.9 <mark>627</mark>	0.0227	mdhr	0.9 <mark>493</mark>	0.0474	mdhr	0.9337	0.0887	mdhr	0.9 <mark>3</mark> 39	0.1436
mef	-0.0534	0.0357	mef	-0.0367	0.0423	mef	-0.2856	0.1947	mef	-0.0167	0.1329
mer	0.2691	0.2769	mer	0 .6386	0.2282	mer	0.2663	0.1885	mer	0.3278	0.2335
pyrc	0.0452	0.0268	pyrc	0.0602	0.0246	pyrc	0.1722	0.2276	pyrc	0.1676	0.1103
pepck	0.0340	0.0474	pepck	0.0310	0.0525	pepck	0.4012	0.1340	pepck	0.1410	0.0875
	0.9710	0.0163		0.9218	0.0353		0.1748	0.2070		0.1850	0.2102
1.1.			1 -1 -			madhf	0.0296	0.0023	madhf	0.0303	0.0026
									madhr	0.7068	0.3379
Serf	0.0115	0.0004	Serf	0.0116	0.0004	Serf	0.0104	0.0007	Serf	0.0104	0.0007
Serb	0.9704	0.0185	Serb	0.9277	0.0591				Serb	0.5454	0.2438
Glvf	0.0076	0.0004	Glvf	0.0077	0.0004	Glvf	0.0074	0.0005	Glvf	0.0072	0.0006
Glvr	0.9805	0.0123	Glvr	0.9456	0.0558	Glvr	0 6071	0.0221	Glvr	0 7329	0.0979
	0.0000	0.0120	Ciyi	0.0 100	0.0000	alaf	0.0124	0.0008	alaf	0.0109	0.0017
						aiai	0.0121	0.0000	alar	0.8792	0 1874
						asof	0.0148	0 0004	asof	0.0144	0.0005
						uopi	0.0140	0.0004	asor	0.3232	0.0000
						hisf	0.0011	0.0003	hisf	0.0202	0.0003
						ilef	0.0064	0.0001	ilef	0.0066	0.0001
						metf	0.0009	0.0001	metf	0.0009	0.0001
						thrf	0.0091	0.0001	thrf	0.0090	0.0001
						valf	0.0239	0.0002	valf	0.0000	0.0001
						van	0.0200	0.0002	valcat	0.0000	0.0000
						leu3f	0.0181	0.0001	leu3f	0.0112	0.0004
T3Pno	0.0162	0 0042	T3Pno	0.0188	0.0028	10001	0.0101	0.0001	10001	0.0107	0.0002
T3Po	0.0021	0.0001	T3Po	0.0021	0.0001						
Sero	0.0021	0.0001	Sero	0.0021	0.0001	Sero	0.0040	0.0001	Sero	0.0039	0.0001
Glyo	0.0035	0.0001	Glyo	0.0000	0.0001	Glyo	0.0040	0.0001	Glyo	0.0000	0.0001
E4Pno	0.0069	0.0004	E4Pno	0.0076	0.0004	E4Po	0.0073	0.0005	E4Po	0.0073	0.0004
Euro Pyro	0.0009	0.0023		0.0070	0.0023		0.0073	0.0023		0.0007	0.0021
nyrno	0.0676	0.0007	pyro	0.0123	0.0000	pyro	0.0027	0.0002	nyrno	0.0020	0.0002
	0.2206	0.0003		0.0070	0.0004	ругро	0.0020	0.0001	ругро	0.0020	0.0001
	0.2290	0.0037	АСАро 04.4ma	0.2312	0.0020	044ma	0.0112	0.0011	044ma	0.0112	0.0000
Gluco	0.0163	0.0013	200mo	0.0191	0.0013	OAAIIIO	0.0112	0.0011		0.0115	0.0009
Gebrout	0.0401	0.0037	C6Pno	0.0409	0.0030						
D5Drout	0.0217	0.0021	D5Dro	0.0230	0.0020						
F6Do	0.0014	0.0004	F6Do	0.0013	0.0004						
	0.0191	0.0009		0.0193	0.0007	CHOo	0.0054	0.0005	CHOo	0.0050	0.0007
	0.0070	0.0004	0100	0.0077	0.0004		0.0004	0.0000		0.0000	0.0007
						Alau	0.0121	0.0000	niau	0.0127	0.0000

Table S3. Metabolic fluxes estimated through the four metabolic models.

lse	o_corr(U)		G	luc_dilu		I I	so	_corr(V)			1	AA_in	
Reaction	Avg	SD	Reaction	Avg	SD					Reaction		Avg	SD
						Aspo		0.0068	0.0004	Aspo		0.0070	0.0003
						Gluo		0.0308	0.0024	Gluo		0.0314	0.0022
						Hiso		0.0012	0.0003	Hiso		0.0013	0.0003
						lleo		0.0074	0.0000	lleo		0.0075	0.0001
						Meto		0.0010	0.0001	Meto		0.0010	0.0001
						Thro		0.0027	0.0000	Thro		0.0026	0.0001
						Valo		0.0080	0.0001	Valo		0.0080	0.0001
						Leuo		0.0206	0.0001	Leuo		0.0206	0.0001
						suco		0.0266	0.0013	suco		0.0270	0.0014
						starcho		0.0203	0.0022	starcho		0.0215	0.0019
						lipid		0.2086	0.0031	lipid		0.2071	0.0030

Table S4. Metabolic network model incorporating uniform isotopomer correction (Iso_corr[U]).

	Reaction	Net flux	Flux SD	Reversibility
alci	\rightarrow Glc	0.5604	0.0080	····,
CO2in	$\rightarrow CO_2$	0.1594	0.0046	
CO2out	$CO_2 \rightarrow$	1.9886	0.0697	
pgif	G6P (123456) → F6P (123456)	0.1709	0.0508	0.9334
g6pdh	G6P (123456) → P5P (23456)	0.2430	0.0945	
tktAf	P5P (12345) + P5P (67890) → S7P (1267890) + T3P (345)	0.0674	0.0217	0.5347
talf	S7P (1234567) + T3P (890) \rightarrow F6P (123890) + E4P (4567)	0.0674	0.0217	0.5207
tktBf	P5P (12345) + E4P (6789) → F6P (126789) + T3P (345)	0.0674	0.0217	0.3079
pfk	F6P (123456) \rightarrow T3P (321) + T3P (456)	0.2865	0.0480	0.9248
pyrf	T3P (123) \rightarrow Pvr (123)	0.6546	0.0373	
g6pt	$G6P(123456) \rightarrow G6P_{p}(123456)$	0.1464	0.1138	0.5937
paifp	$G6P_{p}(123456) \rightarrow F6P_{p}(123456)$	-0.5388	0.1164	0.3406
q6pdhp	$G6P_{p}(123456) \rightarrow P5P_{p}(23456) + CO_{2}(1)$	0.6635	0.0967	
tktAfp	$P5P_{p}(12345) + P5P_{p}(67890) \rightarrow S7P_{p}(1267890) + T3P_{p}(345)$	0.2367	0.0437	0.1546
talfp	$S7P_{p}(1234567) + T3P_{p}(890) \rightarrow F6P_{p}(123890) + E4P_{p}(4567)$	0.2367	0.0437	0.2584
tktBfp	$P5P_{p}(12345) + E4P_{p}(6789) \rightarrow F6P_{p}(126789) + T3P_{p}(345)$	0.2297	0.0434	0.0960
pfkp	$F6P_{p}(123456) \rightarrow T3P_{p}(321) + T3P_{p}(456)$	-0.0724	0.0555	0.7685
pepfp	$T3P_{p}(123) \rightarrow Pvr_{p}(123)$	0.0749	0.0301	
pdhp	$Pyr_{p}(123) \rightarrow Aca_{p}(23)$	0.2296	0.0037	
t3pt	$T3P_{n}(123) \rightarrow T3P(123)$	-0.0176	0.1039	0.2802
P5Ptf	$P5P(12345) \rightarrow P5P_{p}(12345)$	0.0410	0.1280	0.6841
pyrtof	$Pvr(123) \rightarrow Pvr_{o}(123)$	0.2223	0.0314	0.4039
pdh	Pvr (123) \rightarrow Aca _m (23)	0.3211	0.0385	
citdh	Aca_{m} (12) + Oaa_{m} (3456) $\rightarrow Akg_{m}$ (65421) + CO_{2} (3)	0.3211	0.0385	
akadh	Aka_{m} (12345) \rightarrow Suc _m (2345) + CO ₂ (1)	0.2749	0.0394	
sdhf	Suc_m (1234) \rightarrow Mal _m (1234)	0.2749	0.0394	0.9638
sdhs	Suc_m (1234) \rightarrow Mal _m (4321)	0.6807	0.2441	
mdhf	$Mal_{m}(1234) \rightarrow Oaa_{m}(1234)$	0.3283	0.0444	0.9627
mef	$Mal_{m}(1234) \rightarrow Pvr(123) + CO_{2}(4)$	-0.0534	0.0357	0.2691
DVIC	$Pvr(123) + CO_2(4) \rightarrow Oaa_m(1234)$	0.0452	0.0268	0.2001
penck	$O_{abm}(1234) \rightarrow T3P(123) + CO_2(4)$	0.0340	0.0474	0.9710
Serf	$T3P_{n}(123) \rightarrow Ser(123)$	0.0115	0.0004	0.9704
Glvf	Ser (123) \rightarrow Glv (12) + CHO (3)	0.0076	0.0004	0.9805
T3Ppo	$T3P_{p} \rightarrow$	0.0162	0.0042	0.0000
T3Po	T3P	0.0021	0.0001	
Sero	Ser ->	0.0021	0.0001	
Glvo		0.0000	0.0004	
E4Ppo	E4P _n →	0.0069	0.0025	
Pyro	$= \frac{1}{2} p$	0.0126	0.0007	
nyrno	$Pvr_{-} \rightarrow$	0.0120	0.0007	
ACAno	Aca _n →	0.2296	0.0037	
OAAmo	$O_{aa_m} \rightarrow$	0.0185	0.0013	
Gluco	Aka s	0.0461	0.0037	
G6Pnout	$G6P_{x} \rightarrow$	0.0401	0.0037	
P5Pnout	$P5P_{-} \rightarrow$	0.0217	0.0021	
F6Po	E6D	0.0014	0.0004	
		0.0191	0.0009	
Choout	$\Box \Box \Box \rightarrow$	0.0076	0.0004	

Table S5. Metabolic network model incorporating glucose dilution (Gluc_dilu).

	Reaction	Net flux	Flux SD	Reversibility	
glci	\rightarrow G6P	0.5508	0.0017	-	
CO2in	$\rightarrow CO_2$	0.1283	0.0058		
CO2out	$CO_2 \rightarrow$	2.0405	0.0407		
glcina	\rightarrow G6Pn	0.0237	0.0002		
glcc2	$G6Pn \rightarrow G6P$	0.0237	0.0002		
pgif	G6P (123456) → F6P (123456)	0.1625	0.0457	0.8852	
g6pdh	$G6P(123456) \rightarrow P5P(23456)$	0.3683	0.0487		
tktAf	P5P (12345) + P5P (67890) \rightarrow S7P (1267890) + T3P (345)	0.1051	0.0220	0.2864	
talf	S7P (1234567) + T3P (890) \rightarrow F6P (123890) + E4P (4567)	0.1051	0.0220	0.2933	
tktBf	P5P (12345) + F4P (6789) \rightarrow F6P (126789) + T3P (345)	0.1051	0.0220	0.2863	
pfk	$F6P(123456) \rightarrow T3P(321) + T3P(456)$	0.3531	0.0607	0.6208	
pvrf	T3P (123) \rightarrow Pvr (123)	0.000	0.0000	0.0200	
a6pt	$G6P(123456) \rightarrow G6P_{0}(123456)$	0.0436	0.0700	0.6100	
paifo	$G6P_{o}(123456) \rightarrow F6P_{o}(123456)$	-0.0267	0.0694	0.5990	
aendhn	$G6P_{a}$ (123456) \rightarrow P5P_{a} (23456) + CO ₂ (1)	0.0473	0.0070	0.0000	
gopanp tkt∆fn	$P5P_{-}(12345) + P5P_{-}(67890) \rightarrow S7P_{-}(1267890) + T3P_{-}(345)$	0.0355	0.0321	0 3758	
talfn	S7P (1234567) + T3P (890) \rightarrow E6P (123890) + E4P (4567)	0.0000	0.0321	0.5037	
tktBfn	P5P $(12345) + F4P (6789) \rightarrow F6P (126789) + T3P (345)$	0.0339	0.0313	0.3037	
nfkn	F6P (123456) \rightarrow T3P (321) \pm T3P (456)	0.0279	0.0513	0.4942	
ponfn	T3P (123) \rightarrow Pvr (123)	0.0307	0.0595	0.5004	
pepip	$P_{yr} (123) \rightarrow A_{ca} (23)$	0.9111	0.0000		
punp tant	$r_{y_p}(123) \rightarrow r_{x_p}(23)$ $r_{2D}(123) \rightarrow r_{2D}(123)$	0.2312	0.0020	0.0496	
ispi DCD#	$F_{p}(123) \rightarrow F_{p}(123)$	-0.0401	0.1546	0.0460	
PoPti	$F_{p}(12343) \rightarrow F_{p}(12343)$ $D_{yr}(123) \rightarrow D_{yr}(123)$	0.0531	0.0973	0.5951	
рупрі	$Fyi (123) \rightarrow Fyi_p (123)$ $Dyr (123) \rightarrow Acc (22)$	-0.0121	0.0566	0.4003	
pan	$\operatorname{Fyr}(123) \to \operatorname{Acca}_{m}(23)$	0.5022	0.0204		
citan	$Aca_{m}(12) + Oaa_{m}(3450) \rightarrow Akg_{m}(65421) + CO_{2}(3)$	0.5022	0.0204		
akgan	$Akg_m (12345) \rightarrow Suc_m (2345) + CO_2 (1)$	0.4553	0.0216	0.0000	
sant	$\operatorname{Suc}_{m}(1234) \to \operatorname{Mal}_{m}(1234)$	0.4553	0.0216	0.9366	
sdhs	$\operatorname{Suc}_{m}(1234) \to \operatorname{Mal}_{m}(4321)$	0.6774	0.2549	0.0400	
mdhf	$Mal_{m} (1234) \rightarrow Oaa_{m} (1234)$	0.4920	0.0465	0.9493	
mef	$MaI_{m} (1234) \rightarrow Pyr (123) + CO_{2} (4)$	-0.0367	0.0423	0.6386	
pyrc	Pyr (123) + CO ₂ (4) \rightarrow Oaa _m (1234)	0.0602	0.0246		
pepck	$Oaa_m (1234) \rightarrow 13P (123) + CO_2 (4)$	0.0310	0.0525	0.9218	
Serf	$T3P_{p} (123) \rightarrow Ser (123)$	0.0116	0.0004	0.9277	
Glyf	Ser (123) → Gly (12) + CHO (3)	0.0077	0.0004	0.9456	
ТЗРро	$T3P_{p} \rightarrow$	0.0188	0.0028		
T3Po	$T3P \rightarrow$	0.0021	0.0001		
Sero	$\text{Ser} \rightarrow$	0.0039	0.0001		
Glyo	$Gly \rightarrow$	0.0077	0.0004		
E4Ppo	$E4P_{p} \rightarrow$	0.0076	0.0023		
Pyro	$Pyr \rightarrow$	0.0129	0.0006		
pyrpo	$Pyr_p \rightarrow$	0.0678	0.0004		
ACApo	$Aca_p \rightarrow$	0.2312	0.0026		
OAAmo	Oaa _m →	0.0191	0.0015		
Gluco	$Akg \rightarrow$	0.0469	0.0036		
G6Ppout	$G6P_{p} \rightarrow$	0.0230	0.0020		
P5Ppout	$P5P_{p} \rightarrow$	0.0015	0.0004		
F6Po	$F6P \rightarrow$	0.0195	0.0007		
CHOout	$CHO \rightarrow$	0.0077	0.0004		

Table S6. Metabolic network model incorporating isotopomer correction for different amino acids (Iso_corr[V]).

	Reaction	Net flux	Flux SD	Reversibility
glci	→ Glc	0.5713	0.0123	-
CO2in	$\rightarrow CO_{2b}$	0.9024	0.0687	
CO2out	$CO_2 \rightarrow$	3.0591	0.1274	
Alai	→ Ala	0.0002	0.0001	
Aspi	→ Asp	0.0011	0.0001	
Glui	→ Glu	0.0012	0.0001	
Glyi	→ Gly	0.0001	0.0001	
Hisi	→ His	0.0001	0.0000	
llei	→ lle	0.0010	0.0001	
Meti	→ Met	0.0001	0.0001	
Seri	→ Ser	0.0007	0.0001	
Thri	→ Thr	0.0001	0.0001	
Vali	→ Val	0.0021	0.0002	
leui	→ Leu	0.0025	0.0001	
naif	$G6P(123456) \rightarrow F6P(123456)$	0 3924	0.0846	0 4740
aendh	$G6P(123456) \rightarrow P5P(23456)$	0.0024	0.0657	0.4740
gopan tkt∆f	$P5P(12345) + P5P(67890) \rightarrow S7P(1267890) + T3P(345)$	-0.0459	0.0007	0.0880
talf	$S7P(1234567) + T3P(890) \rightarrow F6P(123890) + F4P(4567)$	-0.0459	0.0356	0.0000
tali tl/tDf	$P5P(123450) + F4P(6780) \rightarrow F6P(126780) + T3P(345)$	-0.0439	0.0330	0.0040
	$F_{60}(123456) \rightarrow T_{20}(321) + T_{20}(456)$	-0.0552	0.0341	0.9373
рік	$PEP (122) \rightarrow Drr (122)$	0.2007	0.0461	0.7474
pyn	$FEF(123) \rightarrow FyI(123)$	0.8826	0.2968	0.4740
gopt	$G0P(123450) \rightarrow G0P_p(123450)$	0.0697	0.0901	0.4748
pgifp	$GOP_p(123450) \rightarrow FOP_p(123450)$	-0.7036	0.1867	0.8579
gopanp	$G0P_p(123450) \rightarrow P5P_p(23450) + CO_2(1)$	0.7531	0.1938	
tktAfp	$P5P_p(12345) + P5P_p(67890) \rightarrow S7P_p(1267890) + 13P_p(345)$	0.3354	0.0757	0.9889
taltp	$S/P_p (1234567) + 13P_p (890) \rightarrow F6P_p (123890) + E4P_p (4567)$	0.3354	0.0757	0.9687
tktBfp	$P5P_p(12345) + E4P_p(6789) \rightarrow F6P_p(126789) + T3P_p(345)$	0.3354	0.0757	0.7960
pfkp	$F6P_p (123456) \rightarrow T3P_p (321) + T3P_p (456)$	0.0254	0.0554	0.1769
peptp	$13P_{p} (123) \rightarrow Pyr_{p} (123)$	0.2422	0.2450	
pdhp	$Pyr_p (123) \rightarrow Aca_p (23)$	0.2266	0.0030	
t3pt	$13P_{p}(123) \rightarrow 13P(123)$	0.0168	0.2477	0.1761
P5Ptf	P5P (12345) → P5P _p (12345)	0.2542	0.0882	0.0422
pyrtpf	$Pyr (123) \rightarrow Pyr_p (123)$	0.0414	0.2440	0.8668
pdh	$Pyr (123) \rightarrow Aca_m (23)$	0.3685	0.0436	
citdh	$Aca_{m} (12) + Oaa_{m} (3456) \rightarrow Akg_{m} (65421) + CO_{2} (3)$	0.3685	0.0436	
akgdh	$Akg_{m} (12345) \rightarrow Suc_{m} (2345) + CO_{2} (1)$	0.3389	0.0427	
sdhf	Suc _m (1234) → Mal _m (1234)	0.3389	0.0427	0.9859
sdhs	Suc _m (1234) → Mal _m (4321)	0.6570	0.3330	
mdhf	Mal _m (1234) → Oaa _m (1234)	0.6244	0.2189	0.9337
mef	Mal _m (1234) → Pyr (123) + CO ₂ (4)	-0.2856	0.1947	0.2663
pyrc	Pyr (123) + CO ₂ (4) → Oaa _m (1234)	0.1722	0.2276	
pepck	$Oaa_{m}(1234) \rightarrow PEP(123) + CO_{2}(4)$	0.4012	0.1340	0.1748
mgdhf	Akg _m (12345) → Glu _c (12345)	0.0296	0.0023	
Serf	T3P _p (123) → Ser (123)	0.0104	0.0007	
Glyf	Ser (123) → Gly (12) + CHO (3)	0.0074	0.0005	0.6071
Alaf	Pyr (123) → Ala (123)	0.0124	0.0008	
Aspf	Oaa _m (1234) → Asp (1234)	0.0148	0.0004	
Hisf	P5P _p (12345) + CHO (6) → His (123456)	0.0011	0.0003	
llef	Thr (1234) + Pyr _p (567) \rightarrow IIe (123467) + CO ₂ (5)	0.0064	0.0001	
Metf	Oaa _m (1234) + CHO (5) → Met (12345)	0.0009	0.0001	
Thrf	Asp (1234) → Thr (1234)	0.0091	0.0001	
Valf	$Pyr_{p} (123) + Pyr_{p} (456) \rightarrow Val (12356) + CO_{2} (4)$	0.0239	0.0002	
Leu3f	Aca_{p} (12) + Val (34567) \rightarrow Leu (124567) + CO ₂ (3)	0.0181	0.0001	
sero	Ser →	0.0040	0.0001	

Table S6. Metabolic network model incorporating isotopomer correction for different amino acids (Iso_corr[V]).

		Reaction	Net flux	Flux SD	Reversibility
Glyo	Gly →		0.0075	0.0005	
E4Po	E4P →		0.0073	0.0025	
pyro	Pyr →		0.0027	0.0002	
pyrpo	Pyr _p →		0.0026	0.0001	
OAAmo	Oaa _m →		0.0112	0.0011	
CHOo	CHO →		0.0054	0.0005	
Alao	Ala →		0.0127	0.0008	
Aspo	Asp →		0.0068	0.0004	
gluo	Glu →		0.0308	0.0024	
hiso	His →		0.0012	0.0003	
lleo	lle →		0.0074	0.0000	
Meto	Met →		0.0010	0.0001	
Thro	Thr →		0.0027	0.0000	
Valo	Val →		0.0080	0.0001	
Leuo	Leu →		0.0206	0.0001	
suco	Suc →		0.0266	0.0013	
starcho	G6P _p →		0.0203	0.0022	
lipid	Aca _p →		0.2086	0.0031	

Table S7. Metabolic network model incorporating amino acid reflux (AA_in).

	Reaction	Net flux	Flux SD	Reversibility
glci	→ Glc	0.5698	0.0105	
CO2in	$\rightarrow CO_{2b}$	0.1862	0.1570	
CO2out	$CO_2 \rightarrow$	2.4669	0.1774	
CO2exf	$CO_2 \rightarrow CO_b$	-0.1429	0.1573	0.7763
Alai	→ Ala	0.0018	0.0017	
Aspi	→ Asp	0.0016	0.0004	
Glui	→ Glu	0.0011	0.0012	
Glvi	\rightarrow Gly	0.0003	0.0003	
Hisi	→ His	0.0001	0.0000	
llei	→ lle	0.0008	0.0001	
Meti	→ Met	0.0001	0.0001	
Seri	→ Ser	0.0007	0.0003	
Thri	→ Thr	0.0003	0.0001	
Vali	→ Val	0.0016	0.0004	
leui	→ Leu	0.0019	0.0004	
Pyrni	→ Pvr_	0.0018	0.0007	
Oaami	→ Oaa	0.0000	0.0002	
Duri	→ Pvr	0.0025	0.0013	
Fyn	→ Suc	0.0009	0.0004	
Storobi	→ G6P	0.0078	0.0013	
	\rightarrow T2D	0.0044	0.0006	
т зері Паері	\rightarrow 13Fp	0.0024	0.0012	
E4Ppi	$\rightarrow E4P_p$	0.0014	0.0008	
Асарі	$\rightarrow A ca_p$	0.0094	0.0011	
Acain	\rightarrow Aca ₁	0.0083	0.0031	
Acatt	$Aca_1 (123) \rightarrow Aca_m (123)$	0.0083	0.0031	
pgif	$G6P(123456) \rightarrow F6P(123456)$	0.3577	0.1008	0.3712
g6pdh	$G6P(123456) \rightarrow P5P(23456)$	0.1651	0.0709	
tktAf	P5P (12345) + P5P (67890) → S7P (1267890) + T3P (345)	-0.0130	0.0647	0.3276
talf	$S7P(1234567) + T3P(890) \rightarrow F6P(123890) + E4P(4567)$	-0.0130	0.0647	0.7689
tktBf	P5P (12345) + E4P (6789) → F6P (126789) + T3P (345)	-0.0184	0.0647	0.7768
pfk	F6P (123456) → T3P (321) + T3P (456)	0.3071	0.0659	0.5756
pyrf	PEP (123) → Pyr (123)	0.8414	0.2060	
g6pt	G6P (123456) → G6P _p (123456)	0.0470	0.0591	0.2965
pgifp	G6P _p (123456) → F6P _p (123456)	-0.4002	0.2359	0.8545
g6pdhp	$G6P_{p} (123456) \rightarrow P5P_{p} (23456) + CO_{2} (1)$	0.4301	0.2293	
tktAfp	$P5P_p$ (12345) + $P5P_p$ (67890) → $S7P_p$ (1267890) + $T3P_p$ (345)	0.2128	0.1120	0.9950
talfp	$S7P_{p} (1234567) + T3P_{p} (890) \rightarrow F6P_{p} (123890) + E4P_{p} (4567)$	0.2128	0.1120	0.9847
tktBfp	$P5P_{p}$ (12345) + E4 P_{p} (6789) → F6 P_{p} (126789) + T3 P_{p} (345)	0.2128	0.1120	0.8536
pfkp	F6P _p (123456) → T3P _p (321) + T3P _p (456)	0.0254	0.0554	0.3931
pepfp	$T3P_{p} (123) \rightarrow Pyr_{p} (123)$	0.1374	0.1409	
pdhp	$Pyr_p (123) \rightarrow Aca_p (23)$	0.2164	0.0033	
t3pt	T3P _p (123) → T3P (123)	0.1159	0.1636	0.0944
P5Ptf	P5P (12345) → P5P _p (12345)	0.2096	0.1437	0.0481
pyrtpf	Pyr (123) → Pyr _p (123)	0.1601	0.1471	0.7409
pdh	Pyr (123) → Aca _m (23)	0.4844	0.0616	
citdh	Aca _m (12) + Oaa _m (3456) → Akg _m (65421) + CO ₂ (3)	0.4927	0.0627	
akgdh	Akg_{m} (12345) \rightarrow Suc_{m} (2345) + CO_{2} (1)	0.4623	0.0626	
sdhf	Suc _m (1234) → Mal _m (1234)	0.4735	0.0586	0.9596
sdhs	Suc _m (1234) → Mal _m (4321)	0.3905	0.3322	
mdhf	Mal_m (1234) \rightarrow Oaa _m (1234)	0.4902	0.1463	0.9339
mef	Mal_{m} (1234) \rightarrow Pyr (123) + CO ₂ (4)	-0.0167	0.1329	0.3278
pyrc	Pyr (123) + CO ₂ (4) → Oaa _m (1234)	0.1676	0.1103	/ -
pepck	$Oaa_m (1234) \rightarrow PEP (123) + CO_2 (4)$	0.1410	0.0875	0.1850
madhf	Akg_m (12345) \rightarrow Glu_c (12345)	0.0303	0.0026	0.7068
J				

Table S7. Metabolic network model incorporating amino acid reflux (AA_in).

	Reaction	Net flux	Flux SD	Reversibility
Serf	T3P _p (123) → Ser (123)	0.0104	0.0007	0.5454
Glyf	Ser (123) → Gly (12) + CHO (3)	0.0072	0.0006	0.7329
Alaf	Pyr (123) → Ala (123)	0.0109	0.0017	0.8792
Aspf	Oaa _m (1234) → Asp (1234)	0.0144	0.0005	0.3232
Hisf	P5P _p (12345) + CHO (6) → His (123456)	0.0012	0.0003	
llef	Thr (1234) + Pyr _p (567) \rightarrow Ile (123467) + CO ₂ (5)	0.0066	0.0001	
Metf	Oaa _m (1234) + CHO (5) → Met (12345)	0.0009	0.0001	
Thrf	Asp (1234) → Thr (1234)	0.0090	0.0001	
Valf	Pyr_{p} (123) + Pyr_{p} (456) → Val (12356) + CO_{2} (4)	0.0363	0.0090	
Valcat	Val (12345) → Suc_m (2345) + CO_2 (1)	0.0112	0.0094	
Leu3f	Aca_{p} (12) + Val (34567) \rightarrow Leu (124567) + CO ₂ (3)	0.0187	0.0002	
sero	Ser →	0.0039	0.0001	
Glyo	Gly →	0.0075	0.0004	
E4Po	E4P →	0.0067	0.0021	
pyro	Pyr →	0.0026	0.0002	
pyrpo	Pyr _p →	0.0026	0.0001	
OAAmo	Oaa _m →	0.0113	0.0009	
CHOo	CHO →	0.0050	0.0007	
Alao	Ala →	0.0127	0.0006	
Aspo	Asp →	0.0070	0.0003	
gluo	Glu →	0.0314	0.0022	
hiso	His →	0.0013	0.0003	
lleo	lle →	0.0075	0.0001	
Meto	Met →	0.0010	0.0001	
Thro	Thr →	0.0026	0.0001	
Valo	Val →	0.0080	0.0001	
Leuo	Leu →	0.0206	0.0001	
suco	Suc →	0.0270	0.0014	
starcho	$G6P_{p} \rightarrow$	0.0215	0.0019	
lipid	Aca _p →	0.2071	0.0030	