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Supplementary figure legends

Figure S1. (A) Overlap of number of LDRs predicted by IUPred and FoldIndex algorithms. (B) Venn
diagram for the % of CoREs (FDR < 0.01) found in major life kingdoms represented in UniProt. (C) %
distribution of random hexa-peptides picked from LDR containing proteins.

Figure S2. (A) Ramachandran plot showing the ¢-¥ ranges for extended sheet (E), right handed
helical (R) and left handed (L) conformations. Letter “U” signifies “unassigned”. [R=(¢:-120° to -10°;
:-120° to 20°), E=(d:-180° to -60°;: 60° to 180°), L= (¢: 0° to 90°, Y: -10° to 90°)]. (B) Conservation
analysis for DSSP assigned secondary structures of CoREs and the adjacent regions. (C) Conservation
analysis for the surface accessibility of CoREs and the adjacent regions. (D) Distributions of End-to-
end CA distances for CoREs and neighboring regions of the same lengths.

Figure S3. Structural analyses of control peptides (scrambled CoREs). (A) End to end distances, (B)
deviation in end-to end distances and, (C) root mean squared deviation of superimpositions of
scrambled CoREs found in Protein Data Bank. P-values were calculated using Mann-Whitney U test.
(D)Examples of control peptides.

Figure S4. (A) Enrichment of protein domains in CoRE containing human proteins, when compared to
LDR containing human proteins. The analysis was done using FatiGO. (B) Prediction of DNA Binding
potential of CoREs in yeast and fruit-fly. (C) Predictions for the effect of mutation using SIFT (left
panel, number of amino acid substitutions showing the SIFT score < 0.05). P-values were calculated
using Mann-Whitney U test.

Figure S5. Additional worked-out examples for DNA binding function of CoREs . (A) DNA-bound
examples of CoREs. DNA is represented as blue colored space-filled model. CoRE in the protein is
highlighted in red color. (B) AAG values (methods) for change in DNA binding upon substitution
mutations. AAG values for mutations in CoRE regions are highlighted in red.

Figure S6. (A-D) Bibliographic examples of CoREs, their DNA binding potential and mutations therein.
Upper panel in each figure shows predicted intrinsic disorder (red: disordered, grey: ordered) and
lower panel shows magnified CoRE region, DNA binding residues (red, upper case) as predicted by
BindN/DP-Bind and known loss-of-function mutations.

Figure S7. (A-B) The case study of AT-Hook. (A) Conformations of RGRP motifs alignable (RMSD < 1
A°) to DNA unbound (upper panel) and bound conformations (lower panel, PDB: ). DNA-binding face
is indicated in orange colour. Small solid box indicates glycyl residue. Inset picture in lower panel
shows DNA bound structure of AT-hook (PDB: 2EZD) (B) Ramachandran plots of glycine, proline and
arginine residues occurring in RGRP motifs in DNA unbound (upper panel) and DNA-bound (lower
panel) conformation in non-homologous protein structures. (C) 6,/6x ratio for the glycines in the
DNA bound and unbound conformations of DNA-binding sites in all the DNA-protein complexes
available in PDB.
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Figure S2
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Figure S3
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Figure S4
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Figure S6
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