Supplementary Information: A comprehensive model of the phototransduction cascade in mouse rod cells

Brandon M. Invergo, ${ }^{*}{ }^{\ddagger}$ Daniele Dell’Orco, ${ }^{b}$ Ludovica Montanucci, ${ }^{a}$ Karl-Wilhelm Koch, ${ }^{c}$ and Jaume Bertranpetit ${ }^{a}$

Supplementary Tables

- Table S1: Reactions and kinetics of the phototransduction model
- Table S2: Signal amplification-related parameter values and sources
- Table S3: Signal recovery-related model parameter values and sources

[^0]Table S1 Reactions and kinetics of the phototransduction model

Reaction Equation

$\mathrm{R} \xrightarrow{\text { stimulus }} \mathrm{R}_{0}$
$R \cdot G_{t} \xrightarrow{\text { stimulus }} R_{0} \cdot G_{t}$
$\mathrm{R}_{\mathrm{n}}+\left.\mathrm{RK} \underset{k R K 2}{\stackrel{k R K 1_{n}}{\rightleftharpoons}} \mathrm{R}_{\mathrm{n}} \cdot \mathrm{RK}_{\mathrm{pre}}\right|_{n=0,1, \ldots, 6}$
$\left.\mathrm{R}_{\mathrm{n}} \cdot \mathrm{RK}_{\mathrm{pre}} \xrightarrow{k R K 3_{A T P}} \mathrm{R}_{\mathrm{n}+1} \cdot \mathrm{RK}_{\text {post }}\right|_{n=0,1, \ldots, 5}$
$\mathrm{R}_{\mathrm{n}} \cdot \mathrm{RK}_{\text {post }} \xrightarrow{k R K 4} \mathrm{R}_{\mathrm{n}}+\left.\mathrm{RK}\right|_{n=1,2, \ldots, 6}$
$\mathrm{R}_{\mathrm{n}}+\left.\operatorname{Arr} \underset{k A 2}{\stackrel{k A 1_{n}}{\rightleftharpoons}} \mathrm{R}_{\mathrm{n}} \cdot \operatorname{Arr}\right|_{n=1,2, \ldots, 6}$
$\mathrm{R}_{\mathrm{n}} \cdot \operatorname{Arr} \xrightarrow{k A 3} \mathrm{Ops}+\left.\operatorname{Arr}\right|_{n=1,2, \ldots, 6}$
$\operatorname{Arr}+\operatorname{Arr} \underset{k A 5}{\stackrel{k A 4}{\rightleftharpoons}} \operatorname{Arr}_{\mathrm{di}}$
$\operatorname{Arr}_{\mathrm{di}}+\operatorname{Arr}_{\mathrm{di}} \underset{k A 5}{\stackrel{k A 4}{\rightleftharpoons}} \operatorname{Arr}_{\text {tetra }}$
$\mathrm{R}_{\mathrm{n}} \xrightarrow{\text { ktherm }}$ Ops $\left.\right|_{n=0,1, \ldots, 6}$
$\mathrm{Ops}+\mathrm{G}_{\mathrm{t}} \underset{k G 2}{\stackrel{k O p s}{\rightleftharpoons}} \mathrm{Ops} \cdot \mathrm{G}_{\mathrm{t}}$
$\mathrm{Ops} \cdot \mathrm{G}_{\mathrm{t}} \underset{k G 4_{G D P}}{\stackrel{k G 3}{\rightleftharpoons}} \mathrm{Ops} \cdot \mathrm{G}$

Reaction kinetics

$$
\begin{aligned}
& v_{f}=\operatorname{stimulus} \frac{R}{R_{\text {tot }}} \\
& v_{f}=\operatorname{stimulus} \frac{R \cdot G_{t}}{R_{\text {tot }}} \\
& v_{f}=k R K 1_{n} \times R_{n} \times R K \\
& v_{r}=k R K 2 \times R_{n} \times R K_{\text {pre }} \\
& \\
& v_{f}=k R K 3_{A T P} \times R_{n} \cdot R K_{\text {pre }} \\
& v_{f}=k R K 4 \times R_{n} \cdot R K_{\text {post }} \\
& v_{f}=k A 1_{n} \times R_{n} \times A r r \\
& v_{r}=k A 2 \times R_{n} \cdot A r r
\end{aligned}
$$

$$
v_{f}=k A 3 \times R_{n} \cdot A r r
$$

$$
v_{f}=k A 4 \times A r r^{2}
$$

$$
v_{r}=k A 5 \times A r r_{d i}
$$

$$
v_{f}=k A 4 \times A r r_{d i}^{2}
$$

$$
v_{r}=k A 5 \times A r r_{t e t r a}
$$

$$
v_{f}=k t h e r m \times R_{n}
$$

$$
v_{f}=k O p s \times O p s \times G_{t}
$$

$$
v_{r}=k G 2 \times O p s . G_{t}
$$

$$
v_{f}=k G 3 \times O p s \cdot G_{t}
$$

$$
v_{r}=k G 4_{G D P} \times O p s \cdot G
$$

Comments

Photoactivation of unphosphorylated R

Photoactivation of pre－coupled $R \cdot G_{t}$

Binding of R_{n} and RK．The association rate constant is assumed to decrease expo－ nentially with increasing phosphorylations： $k R K 1_{n}=k R K 1_{0} e^{-\omega n}$

Phosphorylation of R_{n} to give R_{n+1}

Dissociation of the $\mathrm{R}_{\mathrm{n}} \cdot \mathrm{RK}$ complex

Binding of R_{n} and Arr．The associa－ tion rate constant increases linearly with the first four phosphorylations：$k A 1_{n}=$

$$
\begin{array}{ll}
k A r r+(n-1) m_{A r r} & n \leq 4 \\
k A r r+3 m_{A r r} & n>4
\end{array}
$$

Arr－mediated inactivation of R_{n} ．Ops indi－ cates the ligand－free receptor

Arr homo－dimerization

Arr homo－tetramerization

Thermal decay of catalytic active form of R_{n} to give Ops

Spontaneous Ops activity

GDP dissociation from the Ops • G_{t} complex

Reaction Equation	Reaction kinetics	Comments
Ops $\cdot \mathrm{G} \xrightarrow{k G 5_{G T P}}$ Ops $\cdot \mathrm{G}_{\mathrm{GTP}}$	$v_{f}=k G 5_{G T P} \times O p s . G$	GTP binding to the Ops $\cdot \mathrm{G}_{\mathrm{t}}$ complex
$\mathrm{Ops} \cdot \mathrm{G}_{\mathrm{GTP}} \xrightarrow{k G 6} \mathrm{Ops}+\mathrm{G}_{\text {GTP }}$	$v_{f}=k G 6 \times O p s \cdot G_{G T P}$	Dissociation of the Ops $\cdot \mathrm{G}_{\text {GTP }}$ complex
$\mathrm{Ops} \xrightarrow{k R_{\text {recyc }}} \mathrm{R}$	$v_{f}=k R_{\text {recyc }} \times O p s$	Chromophore regeneration by 11-cis retinal binding to Ops
$\mathrm{R}+\mathrm{G}_{\mathrm{t}} \underset{k G_{\text {pre2 }}}{\stackrel{k G_{\text {pre }}}{ }} \mathrm{R} \cdot \mathrm{G}_{\mathrm{t}}$	$\begin{aligned} & v_{f}=k G_{\text {pre } 1} \times G_{t} \times R \\ & v_{r}=k G_{\text {pre } 2} \times R \cdot G_{t} \end{aligned}$	Pre-coupling of inactive R to G_{t}, where $k G_{\text {pre } 1}=1.6 k G 1_{0}$ and $k G_{\text {pre2 }}=315 k G 2$
	$\begin{aligned} & v_{f}=k G 1_{n} \times R \times G_{t} \\ & v_{r}=k G 2 \times R \cdot G_{t} \end{aligned}$	Binding of R_{n} and G_{t}. The association rate constant is assumed to decrease exponentially with increasing phosphorylations: $k G 1_{n}=k G 1_{0} e^{-\omega_{G} n}$
$\left.\mathrm{R}_{\mathrm{n}} \cdot \mathrm{G}_{\mathrm{t}} \underset{k G 4_{G D P}}{\stackrel{k G 3}{\rightleftharpoons}} \mathrm{R}_{\mathrm{n}} \cdot \mathrm{G}\right\|_{n=0,1, \ldots, 6}$	$\begin{aligned} & v_{f}=k G 3 \times R_{n} \cdot G_{t} \\ & v_{r}=k G 4_{G D P} \times R_{n} \cdot G \end{aligned}$	GDP dissociation from the $\mathrm{R}_{\mathrm{n}} \cdot \mathrm{G}_{\mathrm{t}}$ complex
$\left.\mathrm{R}_{\mathrm{n}} \cdot \mathrm{G} \xrightarrow{k G 5_{G T P}} \mathrm{R}_{\mathrm{n}} \cdot \mathrm{G}_{\mathrm{GTP}}\right\|_{n=0,1, \ldots, 6}$	$v_{f}=k G 5_{G T P} \times R_{n} \cdot G$	GTP binding to the $\mathrm{R}_{\mathrm{n}} \cdot \mathrm{G}_{\mathrm{t}}$ complex
$\mathrm{R}_{\mathrm{n}} \cdot \mathrm{G}_{\mathrm{GTP}} \xrightarrow{k G 6} \mathrm{R}_{\mathrm{n}}+\left.\mathrm{G}_{\mathrm{GTP}}\right\|_{n=0,1, \ldots, 6}$	$v_{f}=k G 6 \times R_{n} \cdot G_{G T P}$	Dissociation of the $\mathrm{R}_{\mathrm{n}} \cdot \mathrm{G}_{\mathrm{GTP}}$ complex
$\mathrm{G}_{\mathrm{GTP}} \xrightarrow{k G 7} \mathrm{G}_{\alpha \mathrm{GTP}}+\mathrm{G}_{\beta \gamma}$	$v_{f}=k G 7 \times G_{G T P}$	Dissociation of trimeric G_{t} into α and $\beta \gamma$ subunits
$\mathrm{PDE}+\mathrm{G}_{\alpha \mathrm{GTP}} \underset{\text { kP1 rev }}{\stackrel{k P 1}{\rightleftharpoons}} \mathrm{PDE} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}$	$\begin{aligned} & v_{f}=k P 1 \times P D E \times G_{\alpha G T P} \\ & v_{r}=k P 1_{\text {rev }} \times P D E \cdot G_{\alpha G T P} \end{aligned}$	Binding of $\mathrm{G}_{\alpha \text { GTP }}$ to one PDE inactive subunit
PDE $\cdot \mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{k P 2} \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}$	$v_{f}=k P 2 \times P D E \cdot G_{\alpha G T P}$	Activation of the PDE $\cdot \mathrm{G}_{\alpha \mathrm{GTP}}$ complex
$\mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}+\mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{k P 3} \mathrm{G}_{\alpha \mathrm{GTP}} \cdot \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}$	$v_{f}=k P 3 \times P D E^{*} \cdot G_{\alpha G T P} \times G_{\alpha G T P}$	Binding of $\mathrm{G}_{\alpha \text { GTP }}$ to singly active PDE
$\mathrm{G}_{\alpha \mathrm{GTP}} \cdot \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{k P 4} \mathrm{G}_{\alpha \mathrm{GTP}} \cdot{ }^{*} \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}$	$v_{f}=k P 4 \times G_{\alpha G T P} \cdot P D E^{*} \cdot G_{\alpha G T P}$	Activation of the second $\mathrm{G}_{\alpha G T P}$-bound PDE subunit
$\mathrm{RGS}+\mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{k R G S 1} \mathrm{RGS} \cdot \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}$	$v_{f}=k R G S 1 \times R G S \times P D E^{*} \cdot G_{\alpha G T P}$	Binding of RGS9-1 complex to a singlyactive PDE tetramer

Table S1 - Continued from previous page

Reaction Equation	Reaction kinetics	Comments
$\begin{aligned} & \mathrm{RGS} \cdot \mathrm{G}_{\alpha \mathrm{GTP}} \cdot{ }^{*} \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{k R G S 2} \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}+\mathrm{RGS}+ \\ & \mathrm{G}_{\alpha \mathrm{GDP}} \end{aligned}$	$v_{f}=k R G S 2 \times R G S \cdot G_{\alpha G T P} \cdot{ }^{*} P D E^{*} \cdot G_{\alpha G T P}$	RGS9-1-mediated deactivation of one of two PDE active subunits
$\mathrm{RGS}+\mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{k R G S 1} \mathrm{RGS} \cdot \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}$	$v_{f}=k R G S 1 \times R G S \times P D E^{*} \cdot G_{\alpha G T P}$	Binding of RGS9-1 complex to a singly active PDE
$\mathrm{RGS} \cdot \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{k R G S 2} \mathrm{PDE}+\mathrm{RGS}+\mathrm{G}_{\alpha \mathrm{GDP}}$	$v_{f}=k R G S 2 \times R G S \cdot P D E^{*} \cdot G_{\alpha G T P}$	RGS9-1-mediated deactivation of the singly active PDE
$\mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{\text { kPDE } E_{\text {shutoff }}} \mathrm{PDE}+\mathrm{G}_{\alpha \mathrm{GDP}}$	$v_{f}=k P D E_{\text {shutoff }} \times P D E^{*} \cdot G_{\alpha G T P}$	Inactivation of the PDE* $\cdot \mathrm{G}_{\alpha \mathrm{GTP}}$ complex by $\mathrm{G}_{\text {oGTP }}$'s GTPase activity
$\mathrm{G}_{\alpha \mathrm{GTP}} \cdot{ }^{*} \mathrm{PDE}{ }^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{\text { kPDE } \text { shuoff }} \mathrm{PDE}^{*} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}+\mathrm{G}_{\alpha \mathrm{GDP}}$	$v_{f}=k P D E_{\text {shutoff }} \times G_{\alpha G T P} \cdot{ }^{*} P D E^{*} \cdot G_{\alpha G T P}$	Inactivation of one of the two active PDE subunits by $\mathrm{G}_{\alpha \text { GTP }}$'s GTPase activity
$\mathrm{G}_{\alpha \mathrm{GTP}} \xrightarrow{k G_{\text {shutoff }}} \mathrm{G}_{\alpha \mathrm{GDP}}$	$v_{f}=k G_{\text {shutoff }} \times G_{\alpha G T P}$	$\mathrm{G}_{\alpha G T P}$ auto-catalytic GTPase activity
$\mathrm{G}_{\alpha \mathrm{GDP}}+\mathrm{G}_{\beta \gamma} \xrightarrow{k G_{\text {recyc }}} \mathrm{G}_{\mathrm{t}}$	$v_{f}=k$ Grecyc $\times G_{\alpha G D P} \times G_{\beta \gamma}$	Reconstitution of G_{t} heterotrimer from inactive subunits
$\mathrm{Rec}_{\mathrm{T}}+\mathrm{Ca}_{\text {free }}^{2+} \underset{k R e c 2}{\stackrel{k R e c 1}{\rightleftharpoons}} \mathrm{Rec}_{\mathrm{R}} \cdot \mathrm{Ca}^{2+}$	$\begin{aligned} & v_{f}=k \operatorname{Rec} 1 \times \operatorname{Rec}_{T} \times \operatorname{Ca}_{\text {free }}^{2+} \\ & v_{r}=k \operatorname{Rec} 2 \times \operatorname{Rec}_{R} \cdot \mathrm{Ca}^{2+} \end{aligned}$	Ca^{2+}-induced Rec conformation change
$\mathrm{Rec}_{\mathrm{R}} \cdot \mathrm{Ca}^{2+}+\mathrm{RK} \underset{k R e c 4}{\stackrel{k R e c 3}{\rightleftharpoons}} \mathrm{Rec}_{\mathrm{R}} \cdot \mathrm{Ca}^{2+} \cdot \mathrm{RK}$	$\begin{aligned} & v_{f}=k \operatorname{Rec} 3 \times \operatorname{Rec}_{R} \cdot \mathrm{Ca}^{2+} \times \mathrm{RK} \\ & v_{r}=k R e c 4 \times \operatorname{Rec}_{R} \cdot \mathrm{Ca}^{2+} \cdot R K \end{aligned}$	Binding of RK to Rec
$\mathrm{Ca}_{\text {free }}^{2+} \underset{k 2}{\stackrel{k 1}{\rightleftharpoons}} \mathrm{Ca}_{\text {buff }}^{2+}$	$\begin{aligned} & v_{f}=k 1 \times\left(e T-C a_{b u f f}^{2+}\right) \times C a_{f r e e}^{2+} \\ & v_{r}=k 2 \times C a_{b u f f}^{2+} \end{aligned}$	Ca^{2+} association and dissociation from intracellular buffers with total concentration $e T$
$\mathrm{Ca}_{\text {free }}^{2+} \xrightarrow{\gamma_{C a}}$	$v_{f}=\gamma_{C a} \times\left(\mathrm{Ca}_{\text {free }}^{2+}-\mathrm{Ca}_{0}^{2+}\right)$	Intracellular Ca^{2+}-efflux via the $\mathrm{Na}^{+} / \mathrm{Ca}^{2+} \mathrm{K}^{+}$exchanger
$\longrightarrow \mathrm{Ca}_{\text {free }}^{2+}$	$v_{f}=\frac{10^{6} f C a \times J_{\text {dark }}}{(2+f C a) \times F V_{c y t o}} \times\left(\frac{c G M P}{c G M P_{\text {dark }}}\right)^{n_{c g}}$	Extracellular Ca^{2+}-influx via the cGMPgated cation channels
$\longrightarrow \mathrm{cGMP}$	$v_{f}=\frac{\alpha_{\text {max }}}{1+\left(\frac{c_{f r e e}}{K a_{\text {fre }}}\right)^{m_{1}}}+\frac{\alpha_{\text {max }}}{1+\left(\frac{c_{f \text { fre }}}{K c_{2}}\right)^{m_{2}}}$	cGMP synthesis by guanylate cyclase

cGMP \longrightarrow
$v_{f}=\left(\beta_{d a r k}+\beta_{\text {sub }} \times E\right) \times c G M P$
cGMP hydrolysis by PDE

Table S2 Signal amplification-related model parameter values and sources

Parameter	Description	Value	Source
ω_{G}	Exponential rate of decay of G_{t} affinity for R^{*} with increasing phosphorylations	0.6	ref. ${ }^{1}$
$k G 1_{0}$	Binding rate of G_{t} to unphosphorylated R^{*}	$1 \times 10^{-3} \mathrm{~s}^{-1}$	manually tuned
$k G 2$	Dissociation rate of the $R^{*} \cdot G_{t}$ complex	$2200 \mathrm{~s}^{-1}$	manually tuned
$k G 3$	Dissociation rate of GDP from the $\mathrm{R}^{*} \cdot \mathrm{G}_{\mathrm{t}}$ complex	$8500 \mathrm{~s}^{-1}$	manually tuned
$k G 4_{G D P}$	Association rate of GDP to the $\mathrm{R}^{*} \cdot \mathrm{G}_{\mathrm{t}}$ complex	$400 \mathrm{~s}^{-1}$	manually tuned
$k G 5_{G T P}$	Association rate of GTP to the $\mathrm{R}^{*} \cdot \mathrm{G}_{\mathrm{t}}$ complex	$3500 \mathrm{~s}^{-1}$	manually tuned
kG6	Dissociation rate of the $\mathrm{R}^{*} \cdot \mathrm{G}_{\mathrm{GTP}}$ complex	$8500 \mathrm{~s}^{-1}$	manually tuned
$k G 7$	Dissociation rate of $G_{G T P}$ into $G_{\beta \gamma}$ and $G_{\alpha G T P}$	$200 \mathrm{~s}^{-1}$	ref. ${ }^{2}$
$k O p s$	Association rate of Ops (ligand-free R) and G_{t} due to basal activity	$6.1172 \times 10^{-13} \mathrm{~s}^{-1}$	ref. ${ }^{3}$
$k P 1$	Binding rate of PDE to $\mathrm{G}_{\alpha \text { GTP }}$	$0.05497 \mathrm{~s}^{-1}$	ref. ${ }^{2}$
$k P 1_{\text {rev }}$	Dissociation rate of PDE• $\mathrm{G}_{\alpha \mathrm{GTP}}$, without PDE activation	$0 \mathrm{~s}^{-1}$	ref. ${ }^{2}$
$k P 2$	Rate of activation of the first PDE_{γ} subunit of PDE• $G_{\alpha G T P}$	$940.7 \mathrm{~s}^{-1}$	ref. ${ }^{2}$
$k P 3$	Binding rate of $G_{\alpha G T P}$ to an active PDE $\cdot G_{\alpha G T P}$ complex	$1.4983 \times 10^{-9} \mathrm{~s}^{-1}$	ref. ${ }^{2}$
$k P 4$	Rate of activation of the second PDE_{γ} subunit of $\mathrm{G}_{\alpha G T P} \cdot \mathrm{PDE} \cdot \mathrm{G}_{\alpha G T P}$	$21.088 \mathrm{~s}^{-1}$	ref. ${ }^{2}$

Table S3 Signal recovery-related model parameter values and sources

Parameter	Description	Value	Source
$k R K 10$	Binding rate of RK to unphosphorylated R^{*}	$0.1724 \mathrm{~s}^{-1}$	manually tuned
ω	Exponential rate of decay of RK affinity for R^{*} with increasing phosphorylations	2.5	manually tuned
kRK2	Dissociation rate of R^{*} from RK prior to phosphorylation	$250 \mathrm{~s}^{-1}$	ref. ${ }^{2}$
$k R K 33_{A T P}$	Binding rate of ATP to $\mathrm{R}^{*} \cdot \mathrm{RK}$	$4000 \mathrm{~s}^{-1}$	estimated
kRK4	Dissociation rate of R^{*} from the $\mathrm{R}^{*} \cdot \mathrm{RK}$ complex following phosphorylation	$250 \mathrm{~s}^{-1}$	manually tuned
kArr	Binding rate of Arr to singly-phosphorylated R^{*}	$9.9147 \times 10^{-6} \mathrm{~s}^{-1}$	manually tuned
kA2	Dissociation rate of R^{*} from the Arr $\cdot \mathrm{R}^{*}$ complex prior to R^{*} inactivation	$0.026 \mathrm{~s}^{-1}$	$\begin{aligned} & \text { manually tuned } c . f \text {. } \\ & \text { ref. } 1 \end{aligned}$
$m_{\text {Arr }}$	Linear rate of increase of Arr affinity for R^{*} with increasing phosphorylations	9.5475×10^{-6}	manually tuned c.f. ref. ${ }^{1}$
kA3	Dissociation rate of R^{*} from the Arr $\cdot \mathrm{R}^{*}$ complex following R^{*} inactivation	$1.1651 \mathrm{~s}^{-1}$	estimated
kA4	Binding rate of Arr to form homo-oligomers	$2.9965 \times 10^{-7} \mathrm{~s}^{-1}$	estimated
kA5	Dissociation rate of Arr from homo-oligomers	$0.424 \mathrm{~s}^{-1}$	$\begin{aligned} & \text { manually tuned } c . f \text {. } \\ & \text { ref. }{ }^{4} \end{aligned}$
kRrecyc	Rate constant for R regeneration from Ops.	$0.0007 \mathrm{~s}^{-1}$	ref. ${ }^{5}$
$k_{\text {therm }}$	Thermal decay of R^{*}	$0.0238 \mathrm{~s}^{-1}$	ref. ${ }^{6}$
kGrecyc	Binding rate for $\mathrm{G}_{\alpha G \mathrm{GP}}$ to $\mathrm{G}_{\beta \gamma}$	$2 \mathrm{~s}^{-1}$	ref. ${ }^{7}$
$k G s h u t o f f$	Rate of $\mathrm{G}_{\alpha \text { GTP }}$ auto-catalytic GTPase activity	$0.05 \mathrm{~s}^{-1}$	ref. ${ }^{7}$
$k P D E s h u t o f f$	Rate of PDE-induced spontaneous PDE $\cdot \mathrm{G}_{\alpha \mathrm{GTP}}$ shutoff	$0.1 \mathrm{~s}^{-1}$	manually tuned
kRGS1	Binding rate of $\mathrm{RGS}_{9}-1$ to $\mathrm{PDE} \cdot \mathrm{G}_{\alpha \mathrm{GTP}}$ (one or both active subunits)	$4.8182 \times 10^{-5} \mathrm{~s}^{-1}$	estimated
kRGS2	Rate of hydrolysis and dissociation of one PDE subunit from $G_{\alpha G T P}$	$98 \mathrm{~s}^{-1}$	ref. ${ }^{8}$

Table S3 - Continued from previous page

Parameter Description

kRec 1 Rate of Ca^{2+}-triggered Rec conformational $0.011 \mu \mathrm{M}^{-1} \mathrm{~s}^{-1}$ change (tense to relaxed)
$k R e c 2$ Rate of Rec conformational change (relaxed to $0.05 \mathrm{~s}^{-1}$ ref. ${ }^{9}$ tense)
$k R e c 3$ Binding rate of $\mathrm{Rec} \cdot \mathrm{Ca}^{2+}$ to RK
$k R e c 4$ Dissociation rate of RK from $\mathrm{Rec}-\mathrm{Ca}^{2+}$

Value
ref. ${ }^{9}$
$4.1081 \times 10^{-4} \mathrm{~s}^{-1} \quad$ ref. ${ }^{2}$
$0.610084 \mathrm{~s}^{-1} \quad$ ref. ${ }^{2}$

Table S4 Ca^{2+} and cGMP regulation-related model parameter values and sources

Parameter	Description	Value	Source
$V_{\text {cyto }}$	Outer segment cytoplasmic volume	0.03916 pL	ref. ${ }^{10}$
$K c_{1}$	$E C_{50}$ for GCAP_{1}-mediated Ca^{2+} feedback on GC activity	171 nm	estimated
$K c_{2}$	$E C_{50}$ for GCAP_{2}-mediated Ca^{2+} feedback on GC activity	59 nM	ref. ${ }^{11}$
m_{1}	Hill coefficient for GCAP_{1}-mediated Ca^{2+} feedback on $G C$ activity	3.0	estimated
m_{2}	Hill coefficient for GCAP_{2}-mediated Ca^{2+} feedback on GC activity	1.5	estimated
$\alpha_{\text {max }}$	Maximal rate of cGMP synthesis	$60 \mu \mathrm{M} \mathrm{s}^{-1}$	ref. ${ }^{12}$
$\beta_{\text {dark }}$	Dark rate of cGMP hydrolysis	$3.19 \mathrm{~s}^{-1}$	steady-state analysis
$\beta_{\text {sub }}$	Rate constant for one catalytic PDE subunit	$2.1826 \times 10^{-3} \mathrm{~s}^{-1}$	calculated c.f. ref. ${ }^{13} \quad\left(k_{\text {cat }}=\right.$ $\left.3500 s^{-1}, K_{m}=17 \mu M, B_{c G}=2\right)$
$f C a$	Fraction of the circulating current carried by Ca^{2+}	0.12	ref. ${ }^{14}$
$J_{\text {dark }}$	Dark circulating current	14.87 pA	manually tuned
$c_{\text {cha }}{ }_{\text {dar }}$	Dark cGMP concentration	$6.5 \mu \mathrm{M}$	manually tuned
$n_{c g}$	Hill coefficient for opening cGMP-gated ion channels	3.8	manually tuned
$\gamma_{C a}$	Rate of Ca^{2+} extrusion by $\mathrm{Na}^{+} / \mathrm{Ca}^{2+} \mathrm{K}^{+}$ion exchanger	$981.3558 \mathrm{~s}^{-1}$	steady-state analysis
$C a_{\text {dark }}^{2+}$	Dark Ca^{2+} concentration	$0.25 \mu \mathrm{M}$	ref. ${ }^{15}$
$C a_{0}{ }^{+}$	Minimum intracellular Ca^{2+} concentration	$0.023 \mu \mathrm{M}$	ref. ${ }^{15}$
k_{1}	Binding rate of Ca^{2+} to cytoplasmic buffers	$9.37059 \mu \mathrm{M}^{-1} \mathrm{~s}^{-1}$	estimated
k_{2}	Dissociation rate of Ca^{2+} from cytoplasmic buffers	$46.412 \mathrm{~s}^{-1}$	steady-state analysis
$e T$	Total Ca^{2+} buffer molecules concentration	$400 \mu \mathrm{M}$	ref. ${ }^{2}$

References

1 S. K. Gibson, J. H. Parkes and P. A. Liebman, Biochemistry, 2000, 39, 5738-5749.
2 D. Dell'Orco, H. Schmidt, S. Mariani and F. Fanelli, Molecular BioSystems, 2009, 5, 1232-1246.
3 T. J. Melia, C. W. Cowan, J. K. Angleson and T. G. Wensel, Biophysical Journal, 1997, 73, 3182-3191.
4 M. Kim, S. M. Hanson, S. A. Vishnivetskiy, X. Song, W. M. Cleghorn, W. L. Hubbell and V. V. Gurevich, Biochemistry, 2011, 50, 2235-2242.

5 M. L. Firsov, A. V. Kolesnikov, E. Y. Golobokova and V. I. Govardovskii, Vision Research, 2005, 45, 147-151.
6 J. Xu, R. L. Dodd, C. L. Makino, M. I. Simon, D. A. Baylor and J. Chen, Nature, 1997, 389, 505-509.
7 S. Felber, H. P. Breuer, F. Petruccione, J. Honerkamp and K. P. Hofmann, Biophysical Journal, 1996, 71, 3051-3063.
8 N. P. Skiba, J. A. Hopp and V. Y. Arshavsky, The Journal of Biological Chemistry, 2000, 275, 32716-32720.
9 D. Dell'Orco, M. Müller and K.-W. Koch, Chemical Communications, 2010, 46, 7316-7318.
10 A. V. Kolesnikov, J. Fan, R. K. Crouch and V. J. Kefalov, The Journal of Neuroscience, 2010, 30, 11222-11231.
11 I. V. Peshenko, E. V. Olshevskaya, A. B. Savchenko, S. Karan, K. Palczewski, W. Baehr and A. M. Dizhoor, Biochemistry, 2011, 50, 55905600.

12 K.-W. Koch and L. Stryer, Nature, 1988, 334, 64-66.
13 T. D. Lamb and E. N. Pugh Jr, The Journal of Physiology, 1992, 449, 719-758.
14 O. P. Gross, E. N. Pugh and M. E. Burns, Biophysical Journal, 2012, 102, 1775-1784.
15 M. L. Woodruff, A. P. Sampath, H. R. Matthews, N. V. Krasnoperova, J. Lem and G. L. Fain, The Journal of Physiology, 2002, 542, 843-854.

[^0]: ${ }^{\text {a }}$ IBE - Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain.
 ${ }^{b}$ Department of Life Sciences and Reproduction, Section of Biological Chemistry and Center for BioMedical Computing (CBMC), University of Verona, Verona, Italy.
 ${ }^{c}$ Department of Neuroscience, Biochemistry Group, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
 \ddagger Present address: European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Tel: (+44) (0)1223 49 2547; Email: invergo@ebi.ac.uk;

