Supporting Materials

S R ₂							
No.	حجر _ع مہلیہ ا	R	IC₅₀(u M)	pIC ₅₀			
1	-CO-NH-	CO ₂ H	2.1	5.678			
2	-CO-N((CH ₂) ₃ OH)-	CO ₂ H	1.5	5.824			
3	-(C-O(CH ₂) ₃ OH)=N-	CO ₂ H	0.99	6.004			
4	-(C-NH(CH ₂) ₃ OH)=N-	CO ₂ H	0.75	6.125			
	s						
NO.	$-NR_3R_4$	R ₂	IC ₅₀ (μM)	pIC ₅₀			
5	-NH-(CH ₂) ₂ OH	CO ₂ H	1.26	5.900			
6	-NH-(CH ₂) ₂ NMe ₂	CO ₂ H	0.102	6.991			
7	-Pyrrolidino	CO ₂ H	1.78	5.750			
8	-NH-phenyl	CO ₂ H	0.092	7.036			
9	-NMe-phenyl	CO ₂ H	1.07	5.971			
10	-NH-(2-Me-phenyl)	CO ₂ H	0.97	6.013			
11	-NH-phenyl	<i>C</i> -(1 <i>H</i> -tetrazol-5-yl)	0.096	7.018			
12	-NH-(CH ₂) ₂ Ph	CO ₂ H	0.516	6.287			
13	-NH-(4-F-phenyl)	CO ₂ H	0.219	6.660			

Table S1 The structures and biological activities of the 48 inhibitors of CK2

14	-NH-(3-F-phenyl)	CO ₂ H	0.068	7.167
15	-NH-(4-Cl-phenyl)	CO ₂ H	0.178	6.750
16	-NH-(3-Cl-phenyl)	CO ₂ H	0.032	7.495
17	-NH-(3-MeO-phenyl)	CO ₂ H	0.077	7.114
18	-NH-(3-acetylenyl-phenyl)	CO ₂ H	0.028	7.553
19	-NH-(3-(PhO)-phenyl)	CO ₂ H	0.395	6.403
20	-NH-(3-(CONHMe)-phenyl)	CO ₂ H	0.129	6.889
21	-NH-(3-Cl-phenyl)	C-(1H-tetrazol-5-yl)	0.129	6.889
22	-NH-(3-F-phenyl)	C-(1H-tetrazol-5-yl)	0.075	7.125

СО2Н						
NO.	\mathbf{R}_3	IC ₅₀ (μM)	pIC ₅₀			
23	-phenyl	0.006	8.222			
24	$-(CH_2)_2NMe_2$	0.025	7.602			
25	-cyclopentyl	0.027	7.569			
26	-OMe	0.008	8.097			
27	-cyclopropyl	0.016	7.796			
28	-(CH ₂) ₂ O- <i>i</i> -Pr	0.011	7.959			
29	-(CH ₂)phenyl	0.009	8.046			
30	-(CH ₂) ₂ phenyl	0.003	8.523			
31	-(CH ₂) ₃ phenyl	0.016	7.796			
32	-(3-MeO-phenyl)	0.004	8.398			
33	-(3-Cl, 4-F-phenyl)	0.004	8.398			
34	-(3-F-phenyl)	0.005	8.301			
35	-(2-Cl-phenyl)	0.008	8.097			
36	-(3-Cl-phenyl)	0.001	9.000			
37	-(4-Cl-phenyl)	0.007	8.155			
38	-(3-acetylenyl-phenyl)	0.003	8.523			
39	-(3-CN-phenyl)	0.004	8.398			
40	-(4-(PhO)-phenyl)	0.069	7.161			
41	-(3-(PhO)-phenyl)	0.019	7.721			
42	-(3-(SO ₂ NH ₂)-phenyl)	0.043	7.367			

						`⊂ı		
NO.	A ₁	A ₃	A_4	R ₁	R ₂	R ₃	IC ₅₀ (μM)	pIC ₅₀
43	СН	N	СН	Н	C-(1H-tetrazol-5-yl)	Н	0.045	7.347
44	СН	N	СН	Н	CONH ₂	Н	0.417	6.380
45	СН	N	СН	Me	CO ₂ H	Н	0.006	8.222
46	СН	N	СН	Н	Н	CO ₂ H	0.35	6.456
47	N	СН	N	Н	CO ₂ H	Н	0.22	6.658
48	N	N	СН	Н	CO ₂ H	Н	0.007	8.155

			an an		
No.	pIC50	HTVS score	SP score	XP score	IFD score
1	5.678	-8.654	-8.799	-7.960	-7.901
2	5.824	-8.020	-9.050	-8.862	-8.954
3	6.004	-8.943	-9.173	-9.382	-9.437
4	6.125	-8.611	-8.726	-8.715	-9.088
5	5.900	-8.137	-8.554	-8.689	-8.951
6	6.991	-8.201	-8.360	-7.810	-8.502
7	5.750	-8.804	-9.024	-8.026	-8.633
8	7.036	-8.861	-9.001	-8.607	-6.162
9	5.971	-8.522	-8.429	-5.787	-8.790
10	6.013	-8.850	-9.035	-2.823	-7.120
11	7.018	-7.926	-8.022	-6.788	-5.299
12	6.287	-8.181	-8.720	-8.167	-9.104
13	6.660	-8.912	-9.045	-8.932	-9.192
14	7.167	-9.046	-9.414	-8.996	-8.842
15	6.750	-8.849	-9.005	-8.908	-9.376
16	7.495	-8.958	-9.401	-9.271	-9.603
17	7.114	-8.958	-9.321	-9.190	-7.815
18	7.553	-9.064	-9.265	-9.280	-8.934
19	6.403	-6.803	-8.429	-9.633	-10.369
20	6.889	-8.767	-9.304	-4.878	-9.537
21	6.889	-8.229	-8.302	-7.819	-8.139
22	7.125	-7.886	-8.089	-7.791	-7.003
23	8.222	-10.493	-10.620	-11.224	-12.120
24	7.602	-10.318	-10.481	-11.468	-11.299
25	7.569	-10.535	-10.664	-11.792	-12.360
26	8.097	-10.391	-10.528	-11.231	-10.857
27	7.796	-10.332	-10.518	-11.266	-11.360
28	7.959	-9.714	-10.475	-11.767	-11.571
29	8.046	-10.068	-10.468	-11.158	-12.179
30	8.523	-10.448	-10.550	-12.387	-12.969
31	7.796	-10.635	-10.836	-12.258	-11.621
32	8.398	-10.823	-10.949	-10.472	-12.555
33	8.398	-10.745	-11.030	-12.108	-12.508
34	8.301	-10.899	-11.081	-11.247	-12.101
35	8.097	-10.462	-10.703	-10.347	-11.791
36	9.000	-10.826	-10.986	-11.480	-12.492
37	8.155	-10.409	-10.580	-11.720	-12.231
38	8.523	-10.701	-10.846	-12.071	-12.526
39	8.398	-11.047	-11.157	-11.826	-12.150
40	7.161	-9.885	-10.313	-11.474	-12.062
41	7.721	-10.850	-11.126	-12.485	-13.267
42	7.367	-11.055	-11.396	-12.572	-13.287

 Table S2. Docking scores of 48 inhibitors predicted by different docking protocols

4

43	7.347	-8.569	-9.574	-8.439	-11.799
44	6.380	-7.883	-10.149	-10.624	-10.824
45	8.222	-11.009	-11.092	-12.178	-12.912
46	6.456	-7.783	-7.956	-9.194	-9.343
47	6.658	-8.711	-8.931	-9.350	-9.416
48	8.155	-10.700	-11.032	-12.044	-12.332

Figure S1. The superposition of the docked structures of CX-4945 predicted with (a) *Glide* HTVS docking, (b) *Glide* SP docking, (c) *Glide* XP docking and (d) induced fit docking with its original structure in the crystallographic complex. (carbon atoms in the crystal structure are colored in gray, and those in the redocked structures in green)

Figure S2. The superposition of the docked structures of the 48 inhibitors (carbon atoms are colored in green)

Figure S3. Root-mean-square displacement (RMSD) of the backbone C α atoms of the CK2/inhibitor complexes (2, 6, 9, 12, 23, 28, 38 and 43) with respect to the first snapshot as a function of time.