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Figure S1. The effect of dimerization on cooperativity behavior for a bivalent-ligand 
interacting with a homodimer or heterodimer receptor.
(A) Graphical description of each horizontal bar (in C and E). Each horizontal bar corresponds to 
34 (in C) or 36 (in E) simulations and spans the range of Hill coefficients attainable by altering 
dimerization rate constants (to 0.1, 1, or 10 s-1 or nM-1s-1) while keeping signal binding rate 
constants fixed. The dark blue section of each bar denotes Hill coefficients between the 5th and 
95th percentiles and the light blue tips span the remaining 5% on either side. Each bar contains a 
single red dot, indicating the “baseline” Hill coefficient when all dimerization rate constants are 
set to unity. (B) Kinetic scheme for bivalent-ligand interacting with a homodimer receptor. (C) 
Results for model shown in B, displaying Scatchard ns Hill coefficients. (D) Kinetic scheme for 
bivalent-ligand interacting with a heterodimer receptor. (E) Results for model shown in D, 
displaying Scatchard ns Hill coefficients.



Figure S2. Effect of dimerization affinity on cooperativity behavior using simulations that 
satisfy detailed balance.
(A) Graphical description of each horizontal bar (in B and C). Each horizontal bar comprises 36 
(729) simulations that satisfy detailed balance (see Methods for more info) and spans the range of 
Hill coefficients attainable by altering dimerization rate constants while keeping signal-binding 
rate constants fixed. The bar extends from the minimum to the maximum Hill coefficient for each 
set. (B) Results for Scatchard Hill coefficients (ns). (C) Results for functional Hill coefficients 
(nf). Sets are sorted according to the midpoint between the minimum and maximum Hill 
coefficients.



Figure S3. Relationship between stoichiometrically asymmetric dimer accumulation and 
cooperativity using simulations that satisfy detailed balance.
(A) An example of how “SPP area” (shaded region) is calculated. (B) Scatterplot showing the 
correlation between Scatchard Hill coefficients (ns) and their corresponding SPP areas for each of 
the 312  (531,441) simulations that satisfy detailed balance (see Methods for more info). The 
correlation is highly significant (=-0.62, p<0.001). (C) Scatterplot showing the correlation 
between functional Hill coefficients (nf) and their corresponding SPP areas for each of the 312 

simulations that satisfy detailed balance. The correlation is highly significant (=-0.47, p<0.001).



Figure S4. For functional analyses, the Hill equation is fit to the first portion of the dose-
response curve.
Model-simulated values are depicted in red dots. The Hill equation fit to the model output is 
shown with a solid black line. The fit, and the resulting functional Hill coefficient, is calculated 
using only values prior to the maximum of the model-simulated dose-response curve.

Supplementary Table S1. The ordinary differential equations for the model depicted in 
Figure 1A.
d[S]
dt

 k1[SP] k7[SPP] 2 k9[SPSP] k2[S][P] 2  k8[S][PP] k10[SPP][S]

d[P]
dt

 k1[SP] 2  k3[PP] k5[SPP] k2[S][P] 2 k4[P]2  k6[SP][P]

d[SP]
dt

 k2[S][P] k5[SPP] 2 k11[SPSP] k1[SP] k6[SP][P] 2  k12[SP]2

d[SPSP]
dt

 k10[SPP][S] k12[SP]2  2 k9[SPSP] k11[SPSP]

d[PP]
dt

 k4[P]2  k7[SPP] k3[PP] 2 k8[S][PP]

d[SPP]
dt

 k6[SP][P] 2  k8[S][PP] 2 k9[SPSP] k5[SPP] k7[SPP] k10[SPP][S]



Supplementary Table S2. The ordinary differential equations for the model depicted in 
Figure 1B.
d[S]
dt

 k1[SP] k2[S][P]

d[P]
dt

 k1[SP] k5[SPP] k2[S][P] k6[SP][P]

d[SP]
dt

 k2[S][P] k5[SPP] k1[SP] k6[SP][P]

d[SPP]
dt

 k6[SP][P] k5[SPP]

Supplementary Table S3. The ordinary differential equations for the model depicted in 
Figure 1C.
d[S]
dt

 k1[SP] k2[S][P]

d[P]
dt

 k1[SP] k2[S][P]

d[SP]
dt

 k2[S][P] 2 k11[SPSP] k1[SP] 2  k12[SP]2

d[SPSP]
dt

 k12[SP]2  k11[SPSP]

Supplementary Table S4. The ordinary differential equations for the bivalent-ligand 
interacting with homodimer receptors model depicted in Figure S1B-C. 
d[L]
dt

 k1[LR] k7[LRR] k2[L][R] k8[L][RR]

d[R]
dt

 k1[LR] 2 k3[RR] k5[LRR] k2[L][R] 2 k4[R]2  k6[LR][R]

d[LR]
dt

 k2[L][R] k5[LRR] k1[LR] k6[LR][R]

d[RR]
dt

 k4[R]2  k7[LRR] k3[RR] k8[L][RR]

d[LRR]
dt

 k6[LR][R] k8[L][RR] k5[LRR] k7[LRR]

Supplementary Table S5. The ordinary differential equations for the bivalent-ligand 
interacting with heterodimer receptors model depicted in Figure S1D-E.



d[L]
dt

 k1[LR1] k7[LR1R2 ] k9[LR2 ] k2[L][R1] k8[L][R1R2 ] k10[L][R2 ]

d[R1]
dt

 k1[LR1] k3[R1R2 ] k11[LR1R2 ] k2[L][R1] k4[R1][R2 ] k12[LR2 ][R1]

d[R2 ]
dt

 k3[R1R2 ] k5[LR1R2 ] k9[LR2 ] k4[R1][R2 ] k6[LR1][R2 ] k10[L][R2 ]

d[LR1]
dt

 k2[L][R1] k5[LR1R2 ] k1[LR1] k6[LR1][R2 ]

d[LR2 ]
dt

 k10[L][R2 ] k11[LR1R2 ] k9[LR2 ] k12[LR2 ][R1]

d[LR1R2 ]
dt

 k6[LR1][R2 ] k8[L][R1R2 ] k12[LR2 ][R1] k5[LR1R2 ] k7[LR1R2 ] k11[LR1R2 ]

d[R1R2 ]
dt

 k4[R1][R2 ] k7[LR1R2 ] k3[R1R2 ] k8[L][R1R2 ]


