Molecular BioSystems

Supplementary Information

Inferring cellular regulatory networks with Bayesian Model Averaging for Linear Regression (BMALR)

Xun Huang^a and Zhike Zi^{a,b*}

^aBIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany. ^bDurgent address: Man Blanch Institute for Melecular Constinct, 14105 Barlin, Communi-

^bPresent address: Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany ^{*}Corresponding author, E-mail: zhike.zi@molgen.mpg.de

This Supplementary Information contains the supplementary text for the derivation of Equation 6 in the main text, other technical details for calculating probability density of the data, as well as Supplementary Figures.

1. The derivation of probability density in Gaussian Bayesian network

Given a Gaussian Bayesian network, we can uniquely generate a multivariate (nonsingular) normal distribution and vice versa^{1, 2}. Suppose we have an *n*-dimensional random vector (X), which follows a multivariate normal distribution:

$$\rho(X|u,r) = N(X;u,r^{-1})$$
(S1)

where the parameter u is the mean vector of this distribution, and the parameter r is the inverse covariance matrix of this distribution. To make the model decomposable, the global parameter independence and parameter modularity should be satisfied¹. ³. Therefore, the parameter u is assumed to follow a multivariate normal distribution, and the parameter r is assumed to follow a Wishart distribution¹. Then, the prior distributions of u and r are given below:

$$\rho(u | r) = N(u; \mu, (v \cdot r)^{-1})$$
(S2)

$$\rho(r) = Wishart(r; \alpha, \beta) \tag{S3}$$

where the hyperparameter μ is the mean vector of the distribution of u. The hyperparameter v is a positive number. The hyperparameter α is the degree of freedom of the Wishart distribution, and α should be greater than (*n*-1). The hyperparameter β is an *n*-by-*n* scale matrix, and should be positive-definite.

If a dataset *D* is generated by the random vector *X*, which satisfies the distribution mentioned above, there is a close-formed expression of $\rho(D_W)$ that is the probability density of the data restricted to the subset *W* of the variables in *X*. In addition, we use the parameter *M* to stand for the sample size of *D*, l_W for the number of elements in *W*. Then, the probability density of D_W will satisfy the following equation^{1,2}:

$$\rho(D_w) = \left(\frac{1}{2\pi}\right)^{\frac{M_w}{2}} \left(\frac{\upsilon}{\upsilon + M}\right)^{\frac{l_w}{2}} \left(\frac{c(l_w, \alpha_w)}{c(l_w, \alpha_w + M)}\right) \left(\frac{\left|\beta_w\right|^{\frac{\alpha_w}{2}}}{\left|\beta_w^*\right|^{\frac{\alpha_w + M}{2}}}\right)$$
(S4)

where

$$c(n,\alpha) = \left[2^{n\alpha/2}\pi^{n(n-1)/4}\prod_{i=1}^{n}\Gamma(\frac{\alpha+1-i}{2})\right]^{-1}$$
(S5)

$$\beta_{W} = \left((\beta^{-1})^{(W)} \right)^{-1} \tag{S6}$$

$$\boldsymbol{\beta}_{W}^{*} = \boldsymbol{\beta}_{W} + \boldsymbol{s}_{W} + (\frac{\boldsymbol{\nu}M}{\boldsymbol{\nu}+M})(\overline{X}_{W} - \boldsymbol{\mu}^{(W)})(\overline{X}_{W} - \boldsymbol{\mu}^{(W)})^{T}$$
(S7)

$$s_{W} = \sum_{i=1}^{M} (X_{W}[i] - \overline{X}_{W}) (X_{W}[i] - \overline{X}_{W})^{T}$$
(S8)

$$\alpha_w = \alpha - n + l_w \tag{S9}$$

2. Default parameter settings for probability density in Gaussian Bayesian network

To calculate the probability density of data $\rho(D_W)$ with the Equation S5 listed above, we need to specify four parameters μ , v, a, and β , which are the hyperparameters shown in Equation S3 and Equation S4. The parameter μ is the mean vector of the parameter u in Equation S2. In BMALR, we use the mean vector of the real sample (\overline{X}) as the default value for the parameter μ . The parameter v is the size of the hypothetical sample upon which we base our prior belief concerning the value of $u^{1,2}$. Therefore, we use the sample size M as the default value for the parameter v. The parameter a can be regarded as the effective sample size for determining the parameter r in Equation S2, and it should be greater than $(n-1)^{1,2}$. In BMALR, we use n as the default value for parameter a. The parameter β can be regarded as covariance matrix in the hypothetical sample upon which we based on our prior belief of u. It is an *n*-by-n positive definite matrix. We assume the prior probability of all the edges is uniformly distributed for simplification. With such flat prior, β will be a diagonal matrix. Therefore, we set the default value of β as H, where H is the diagonal matrix of the covariance matrix of the sample data.

In summary, the parameter settings for calculating probability density of the data, $\rho(D_W)$, is listed as below:

$$\mu = X \tag{S10}$$

$$v = M$$
 (S11)

$$\alpha = n$$
 (S12

$$\beta = H \tag{S13}$$

where *H* is a *n*-by-*n* diagonal matrix, and $H(i,i) = \text{variance}(X_i)$, for i = 1, 2, ..., n. With the default parameter settings in Equation S10-S13, Equation S4 can reformate as below:

$$\rho(D_{W}) = \left(\frac{1}{2\pi}\right)^{\frac{M \cdot l_{W}}{2}} \left(\frac{1}{2}\right)^{\frac{l_{W}}{2}} \left(\frac{c(l_{W}, l_{W})}{c(l_{W}, l_{W} + M)}\right) \left(\frac{\left|H^{(W)}\right|^{\frac{M}{2}}}{\left|E^{(W)} + M \cdot R^{(W)}\right|^{\frac{l_{W} + M}{2}}}\right)$$
(S14)

where $E^{(W)}$ is a l_W -by- l_W identity matrix.

The likelihood that the local structure G_{Pa} generates the data $D_{Pa,Xi}$, $P(D_{Pa,Xi}|G_{Pa})$ can be rewritten as:

$$P(D_{Pa,X_{i}} | G_{Pa}) = \frac{\rho(D_{Pa,X_{i}})}{\rho(D_{Pa})}$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{M(l_{Pa,X_{i}} - l_{Pa})}{2}} \left(\frac{1}{2}\right)^{\frac{l_{Pa,X_{i}} - l_{Pa}}{2}} \left(\frac{c(l_{Pa,X_{i}}, l_{Pa,X_{i}})c(l_{Pa}, l_{Pa} + M)}{c(l_{Pa,X_{i}}, l_{Pa,X_{i}} + M)}\right) \left(\frac{\left|H^{(Pa)}\right|^{\frac{M}{2}} \left|E^{(Pa)} + M \cdot R^{(Pa)}\right|^{\frac{l_{Pa}+M}{2}}}{\left|H^{(Pa,X_{i})}\right|^{\frac{M}{2}} \left|E^{(Pa,X_{i})} + M \cdot R^{(Pa)}\right|^{\frac{l_{Pa}+M}{2}}}\right)$$

$$= \left(\frac{1}{2\pi}\right)^{\frac{M}{2}} \left(\frac{1}{2}\right)^{\frac{1}{2}} \left(\frac{c(l_{Pa,X_{i}}, l_{Pa,X_{i}})c(l_{Pa}, l_{Pa} + M)}{c(l_{Pa,X_{i}}, l_{Pa,X_{i}} + M)}\right) \left(\frac{\left|E^{(Pa)} + M \cdot R^{(Pa)}\right|^{\frac{l_{Pa}+M}{2}}}{\left|H^{(Xi)}\right|^{\frac{M}{2}} \left|E^{(Pa,X_{i})} + M \cdot R^{(Pa,X_{i})}\right|^{\frac{l_{Pa,X_{i}}+M}{2}}}\right)$$
(S15)

To further increase the efficiency, we make an approximation: $\frac{c(l_{P_a,X_i}, l_{P_a,X_i})c(l_{P_a}, l_{P_a} + M)}{c(l_{P_a,X_i}, l_{P_a,X_i} + M)} \approx 1$, therefore,

$$P(D_{P_{a,X_{i}}} | G_{P_{a}}) \approx \left(\frac{1}{2\pi}\right)^{\frac{M}{2}} \left(\frac{1}{2}\right)^{\frac{1}{2}} \left(H^{(X_{i})}\right)^{-\frac{M}{2}} \left(\frac{\left|E^{(P_{a})} + M \cdot R^{(P_{a})}\right|^{\frac{l_{P_{a}} + M}{2}}}{\left|E^{(P_{a,X_{i}})} + M \cdot R^{(P_{a,X_{i}})}\right|^{\frac{l_{P_{a,X}} + M}{2}}}\right)$$
(S16)

The posterior probability of an edge feature f is computed with

$$P(f | D) \approx \sum_{P_{a} \in S_{i}} f(G_{P_{a}}) P(G_{P_{a}} | D_{P_{a}, X_{i}})$$

$$= \frac{\sum_{P_{a} \in S_{i}} f(G_{P_{a}}) P(D_{P_{a}, X_{i}} | G_{P_{a}}) P(G_{P_{a}})}{\sum_{P_{a} \in S_{i}} P(D_{P_{a}, X_{i}} | G_{P_{a}}) P(G_{P_{a}})}$$
(S17)

It is worth noting that replacing $P(D_{P_a,X_i} | G_{P_a})$ in equation S17 with equation S16 leads to the cancellation of the item $\left(\frac{1}{2\pi}\right)^{\frac{M}{2}} \left(\frac{1}{2}\right)^{\frac{1}{2}} \left(H^{(X_i)}\right)^{\frac{M}{2}}$. Therefore, the item $\left(\frac{1}{2\pi}\right)^{\frac{M}{2}} \left(\frac{1}{2}\right)^{\frac{1}{2}} \left(H^{(X_i)}\right)^{\frac{M}{2}}$ can be ignored in the implementation of the algorithm.

Therefore, we made the following simplification for calculating $\rho(D_W)$:

$$\rho(D_{W}) \propto \left(\frac{1}{2\pi}\right)^{\frac{M' l_{W}}{2}} \left(\frac{1}{2}\right)^{\frac{l_{W}}{2}} \left(\frac{\left|H^{(W)}\right|^{-\frac{M}{2}}}{\left|E^{(W)} + M \cdot R^{(W)}\right|^{\frac{l_{W} + M}{2}}}\right)$$

$$\propto \left|E^{(W)} + M \cdot R^{(W)}\right|^{\frac{-l_{W} - M}{2}}$$
(S18)

We noticed that when the parameter M is too large (e.g. > 100), loss of precision often appears in the calculation of equation S18. In practice, one can set M with a value between 20 and 100 to avoid this problem and get an approximate value for equation S18 in case that the sample size is too large. In BMALR, we set M = 50.

3. References

- 1. D. Geiger and D. Heckerman, Ann Stat, 2002, 30, 1412-1440.
- 2. R. E. Neapolitan, Learning bayesian networks, Pearson Prentice Hall Upper Saddle River, 2004.
- 3. D. Pe'er, Sci STKE, 2005, 2005, pl4.

4. Supplementary Figures

Supplementary Figure 1 PR curves for DREAM4 *in silico* Size100 Multifactorial Challenge. BMALR^{*} denotes the results of BMALR with the log transformation of the datasets. (A) For gold standard network 1 (NET1). (B) For gold standard network 2 (NET2). (C) For gold standard network 3 (NET3). (D) For gold standard network 4 (NET4). (E) For gold standard network 5 (NET5).

Supplementary Figure 2 ROC curves for DREAM4 *in silico* Size100 Multifactorial Challenge. BMALR^{*} denotes the results of BMALR with the log transformation of the datasets. (A) For gold standard network 1 (NET1). (B) For gold standard network 2 (NET2). (C) For gold standard network 3 (NET3). (D) For gold standard network 4 (NET4). (E) For gold standard network 5 (NET5).

Supplementary Figure 3 Similarity of the inference methods clustered by their predicted networks on the DREAM5 network inference sub-challenge.

Supplementary Figure 4 The performance (area under precision-recall curve, AUPR) of individual methods and community methods with combinations of every two individual methods on DREAM4 *in silico* size 100 multifactorial sub-challenge. (A) For gold standard network 2 (NET2). (B) For gold standard network 3 (NET3). (C) For gold standard network 4 (NET4). (D) For gold standard network 5 (NET5). The dashed horizontal line denotes the highest performance level in all the methods.

Supplementary Tables

Supplementary Table 1 The influence of *maxFanIn* on the performance of BMALR in DREAM4 *in silico* size 100 multifactorial sub-challenge.

MaxFanIn	NET1		NET2		NET3		NET4		NET5		~	Time
	AUPR	AUROC	Score	(second)								
2	0.155	0.745	0.166	0.737	0.231	0.792	0.234	0.808	0.214	0.778	39.4	1.8E+00
3	0.151	0.742	0.163	0.735	0.232	0.798	0.231	0.806	0.214	0.790	39.4	5.7E+01
4	0.148	0.743	0.159	0.732	0.230	0.791	0.227	0.796	0.212	0.793	38.6	1.8E+03

Supplementary Table 2 The influence of *maxFanIn* on the performance of BMALR in DREAM5 network inference subchallenge with *in silico* datasets.

maxFanIn	AUPR	AUROC	Optimal F-score	Time (second)
2	0.320	0.809	0.372	1.3E+02
3	0.321	0.809	0.374	8.3E+03

Supplementary Table 3 The influence of *maxFanIn* on the performance of BMALR in the benchmark of the T-cell signaling network.

Method	AUPR	AUROC	Optimal F-score	<i>p</i> -value of Fisher's exact test	Time (second)
2	0.343	0.720	0.500	2.70E-04	1.3E-01
3	0.345	0.726	0.500	2.70E-04	1.4E-01
4	0.337	0.709	0.465	9.44E-04	1.6E-01
5	0.338	0.709	0.462	9.44E-04	2.0E-01
6	0.338	0.709	0.462	9.44E-04	2.2E-01
7	0.338	0.709	0.462	9.44E-04	2.4E-01