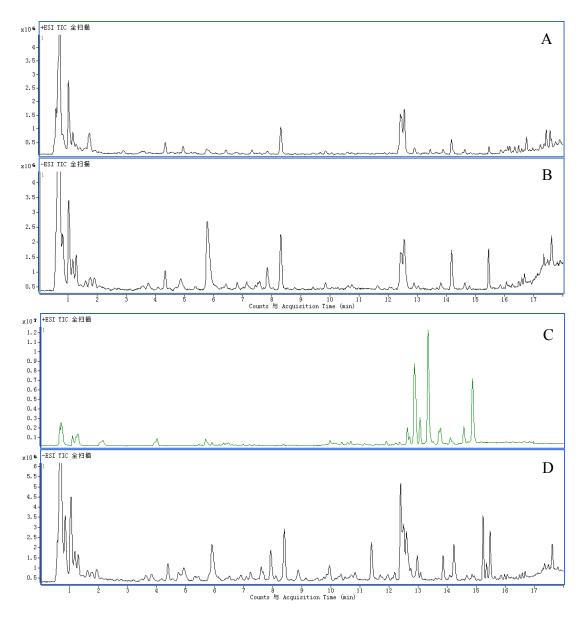
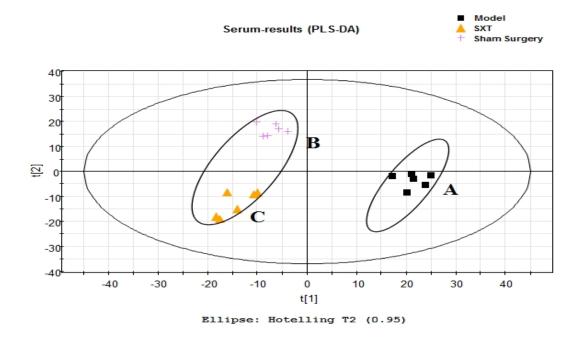
Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2014

Electronic supplementary information

Shengxian Decoction in chronic heart failure treatment and synergistic property of Platycodonis Radix: a metabolomic approach and its application[†]


Feng Zhang,^{‡a} Qin Zhan,^{‡a} Xin Dong,^b Bo Jiang,^a Lianna Sun,^b Shouhong Gao,^a Zhiqing He,^c Xia Tao,^a WanSheng Chen^{*a}

Preparation of SXT, SXT-PG and PG


SXT: Powders of Astragali Radix (600 g), Anemarrhenae Rhizoma (300 g), Bupleuri Radix (150 g), Platycodonis Radix (150 g), and Cimicifuage Rhizoma (100 g) were suspended in water in a beaker flask (5 L) for 24 h, and then were boiled with water (5 L × 3). The combined water decoction (approximately 15 L) was concentrated (650 mL) by a rotary evaporator under vacuum, and the concentrated decoction (SXT, 2.0 mg/mL) was stored in the refrigerator at 4 °C before analysis. The concentrations of main bioactive compounds of SXT, including astragaloside IV, calycosin-7-O-β-D-glucoside, timosaponin B-II, mangiferin, saikosaponin A, saikosaponin D, platycodin D and prim-O-glucosylcimifugin, were 0.28, 0.41, 55.56, 3.34, 2.23, 0.41, 6.12, 0.95 μg/mg (mg referred SXT dry extract) respectively.

Preparation of SXT-PG (650 mL, 1.77 mg mL⁻¹) was the same as that of SXT, except that Platycodonis Radix was removed.

Preparation of PG (650 mL, 0.23 mg mL⁻¹) was the same as that of SXT, and only Platycodonis Radix was extracted.

Fig. S1 TICs of urine samples in positive (A) and negative modes (B); TICs of serum samples in positive (C) and negative (D) modes.

Fig. S2 PLS-DA score plots of serum metabolic profiling of model, sham surgery and SXT groups in day 37.

Table S1 RSDs for each peak in urine QC samples (n=6).

No	$t_R(\min)$									
	peak 1	peak 2	peak 3	peak 4	peak 5	peak 6	peak 7	peak 8	peak 9	peak 10
1	4.39	5.86	7.89	8.38	11.39	12.40	13.87	14.21	15.24	15.48
2	4.39	5.88	7.91	8.41	11.39	12.41	13.88	14.24	15.25	15.48
3	4.40	5.91	7.93	8.40	11.40	12.40	13.86	14.24	15.24	15.48
4	4.40	5.92	7.94	8.41	11.41	12.41	13.88	14.25	15.25	15.50
5	4.39	5.91	7.92	8.39	11.39	12.39	13.87	14.23	15.24	15.48
6	4.43	5.91	7.92	8.43	11.42	12.42	13.89	14.24	15.25	15.49
RSD (%)	0.39	0.37	0.22	0.19	0.13	0.08	0.05	0.09	0.05	0.05

Table S2 RSDs for each peak in plasmatic QC samples (n=6).

No	$t_R(\min)$									
	peak 1	peak 2	peak 3	peak 4	peak 5	peak 6	peak 7	peak 8	peak 9	peak 10
1	4.02	9.98	11.15	11.90	12.64	12.88	13.08	13.35	14.59	14.88
2	4.02	9.98	11.15	11.91	12.64	12.87	13.08	13.35	14.59	14.88
3	4.01	9.98	11.16	11.91	12.63	12.87	13.07	13.36	14.58	14.89
4	4.02	9.97	11.16	11.91	12.64	12.87	13.07	13.35	14.58	14.89
5	4.02	9.98	11.15	11.91	12.64	12.87	13.08	13.35	14.59	14.88
6	4.02	9.98	11.15	11.91	12.64	12.87	13.08	13.35	14.59	14.88
RSD (%)	0.10	0.04	0.02	0.02	0.03	0.03	0.03	0.02	0.03	0.02