Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2014

Supplementary Material (ESI) for Molecular BioSystems This journal is © the Royal Society of Chemistry 2014

Supporting Information

Structural mass spectrometry of tissue extracts to distinguish cancerous and non-cancerous breast diseases

Kelly M. Hines, ^{1,2,3} Billy R. Ballard,⁴ Dana R. Marshall, ^{3, 4*} and John A. McLean^{1,2,3*}

¹Department of Chemistry, Vanderbilt University, Nashville, TN 37235; ²Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232; ³Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235; ⁴Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208.

* Authors to whom correspondence should be addressed. For D. R. Marshall: tel, 615.327.6549; fax, 615.327.6409; e-mail, dmarshall@mmc.edu. For J. A. McLean: tel, 615.322.1195; fax, 615.343.1234; e-mail, john.a.mclean@vanderbilt.edu.

Abstract: Breast cancer is well-known to broadly impact cellular metabolism and aberrant metabolism in breast cancer tumors has been widely studied by both targeted and untargeted analyses to characterize the affected metabolic pathways. In this work, we utilize ultra-performance liquid chromatography (UPLC) in tandem with ion mobility-mass spectrometry (IM-MS), which provides chromatographic, structural, and mass information, to characterize the aberrant metabolism associated with breast diseases such as cancer. In a double-blind analysis of matched control (n=3) and disease tissues (n=3), tissues were homogenized, polar metabolites were extracted, and the extracts were characterized by UPLC-IM-MS/MS. Principle component analysis revealed a strong separation between disease tissues, with one diseased tissue clustering with the control tissues along PC1 and two others separated along PC2. Using post-ion mobility MS/MS spectra acquired by data-independent acquisition, the features giving rise to the observed grouping were determined to be biomolecules associated with aggressive breast cancer tumors, including glutathione, oxidized glutathione, thymosins $\beta 4$ and $\beta 10$, and choline-containing species. Pathology reports revealed the outlier of the disease tissues to be a benign fibroadenoma, whereas the other disease tissues represented highly metabolic benign and aggressive tumors. This IM-MS-based workflow bridges the transition from untargeted metabolomic profiling to tentative identifications of key descriptive molecular features using data acquired in one analysis, with additional experiments performed only for validation. The ability to resolve cancerous and non-cancerous tissues at the biomolecular level demonstrates UPLC-IM-MS/MS as a robust and sensitive platform for metabolomic profiling of tissues.

Sample Name	Tissue Weight (mg, wet)
1C	44.93
2D	50.57
3C	40.69
4D	48.99
5C	52.09
6D	48.80
Average	47.68
Standard Deviation	± 3.81

Table S.1. Weights of Tissues used for Polar Metabolite Extraction

Method for Data Processing with XCMS

The R package can be downloaded from http://www.r-project.org/. After installing R, XCMS may be downloaded using the following code in an active R session:

source("http://bioconductor.org/biocLite.R")
biocLite("xcms", dep=T)

Additional details may be found on the XCMS Bioconductor website (http://www.bio conductor.org/packages/release/bioc/html/xcms.html). Prior to processing data with XCMS, .raw files must be converted to .mzXML using ProteoWizard (http://proteo wizard.sourceforge.net/) MSConvert and the "sortByScanTime" function.

XCMS Method

The aligned data in the diffreport was normalized such that all intensities within a sample summed to

10,000. The data was then transposed such that the sample and file names were in a column instead of a row,

and this dataset was imported into Umetrics Extended Statistics for statistical analysis.

Figure S.1. Principal component analysis score plot for breast cancer tissue dataset including quality control (QC) samples for diagnostic purposes. QC samples group together well, indicating good reproducibility throughout the queue. QC samples cluster near the center of the PCA indicating they are representative of all samples.

Figure S.2. Goodness of fit for PCA analysis of breast tissue extracts. Model parameters R2X (light grey) and Q2 (dark grey) describe the cumulative variability extracted by including each consecutive principal component (PC1-6). For example, including PC1 and PC2 extracts approximately 70% (R2X) of the variability in the dataset.

Figure S.3. Orthogonal partial least squares-discriminant analysis for samples 1C (lower left) and 2D (upper right) indicates the molecular features differentially expressed between the two samples. Features approaching the upper right corner are more abundant in and more unique to sample 2D, whereas features approaching the lower left corner are more abundant in and more unique to sample 1C. The 18 features highlighted in Table 1 are indicated with red diamonds.

Figure S.4. Orthogonal partial least squares-discriminant analysis for samples 3C (lower left) and 4D (upper right) indicates the molecular features differentially expressed between the two samples. Features approaching the upper right corner are more abundant in and more unique to sample 4D, whereas features approaching the lower left corner are more abundant in and more unique to sample 3C. The 18 features highlighted in Table 1 are indicated with red diamonds.

Figure S.5. Orthogonal partial least squares-discriminant analysis for samples 5C (lower left) and 6D (upper right) indicates the molecular features differentially expressed between the two samples. Features approaching the upper right corner are more abundant in and more unique to sample 6D, whereas features approaching the lower left corner are more abundant in and more unique to sample 5C. The 18 features highlighted in Table 1 are indicated with red diamonds.

Figure S.6. Orthogonal partial least squares-discriminant analysis for samples 4D and 6D (lower left) and Controls and 2T (upper right) indicates the molecular features differentially expressed between the two samples. Features approaching the upper right corner are more abundant in and more unique to samples 2D, 1C, 3C and 5C, whereas features approaching the lower left corner are more abundant in and more unique to samples 4T and 6T. The 18 features highlighted in Table 1 are indicated with red diamonds.

Data Used to Prepare Figure 2c and Table 1

Data from XCMS peak aligned output. All comparisons are made between matched disease and control pairs. Fold-changes were calculated by dividing the larger of the two tissues (control or diabetic) by the smaller to obtain numbers ≥ 1 . The student's t-test with two-tails, equal variance, and $\alpha=0.05$ were used to determine significance. The Bonferroni correction has been applied to all p-values to account for multiple testing.

	Feature 1 <i>m/z</i> 258.11, 1.53 min							
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)			
1C_01 1C_02 1C_03	20.62 21.23 21.51	21.12	0.37	0.37	4 2E 04			
2D_01 2D_02 2D_03	3.01 2.44 2.34	2.60	0.30	0.1	4.2E-04			
3C_01 3C_02 3C_03	57.87 57.65 62.03	59.18	2.02	37	9.0E-04			
4D_01 4D_02 4D_03	222.92 219.03 212.03	217.99	4.51	3.7				
5C_01 5C_02 5C_03	10.41 10.13 9.26	9.93	0.49	60	1 OF 02			
6D_01 6D_02 6D_03	58.93 56.65 64.57	60.05	3.33	6.0	1.71-02			

Table S.2.Normalized abundances, fold-changes and *p*-values for Feature #1.

Feature 2 <i>m/z</i> 348.07, 2.36 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	6.64 6.86 6.80	6.77	0.09	57	2.1E-03	
2D_01 2D_02 2D_03	1.01 1.46 1.11	1.19	0.19	5.7		
3C_01 3C_02 3C_03	44.55 43.20 49.76	45.84	2.82	3.2	4.8E-03	
4D_01 4D_02 4D_03	152.84 145.58 143.86	147.42	3.89			
5C_01 5C_02 5C_03	1.40 1.43 0.91	1.25	0.24	10.5	7 3E 04	
6D_01 6D_02 6D_03	13.42 12.81 13.25	13.16	0.26	10.5	7.3E-04	

Table S.3.Normalized abundances, fold-changes and *p*-values for Feature #2.

	Feature 3 <i>m/z</i> 136.06, 2.36 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)		
1C_01 1C_02 1C_03	10.41 9.18 9.50	9.70	0.52	3.0	3.4E-02		
2D_01 2D_02 2D_03	2.44 2.26 2.74	2.48	0.20	3.9			
3C_01 3C_02 3C_03	46.06 47.64 51.60	48.43	2.33	2.4	4.7E-03		
4D_01 4D_02 4D_03	116.81 113.81 111.86	114.16	2.04				
5C_01 5C_02 5C_03	2.71 2.47 1.93	2.37	0.33	5.2	2 8E 02		
6D_01 6D_02 6D_03	12.69 12.09 12.29	12.36	0.25	5.2	2.8E-03		

Table S.4.Normalized abundances, fold-changes and *p*-values for Feature #3.

Feature 4 <i>m/z</i> 308.09, 2.45 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	6.01 4.26 4.33	4.86	0.81	7.8	1.2	
2D_01 2D_02 2D_03	0.65 0.60 0.62	0.62	0.02	7.8		
3C_01 3C_02 3C_03	35.38 37.38 38.53	37.10	1.30	4.8	8.6E-03	
4D_01 4D_02 4D_03	186.32 176.02 167.92	176.75	7.53			
5C_01 5C_02 5C_03	8.66 9.94 8.77	9.12	0.58	16	6 4E 03	
6D_01 6D_02 6D_03	42.75 43.53 39.88	42.05	1.57	4.6	6.4E-03	

Table S.5.Normalized abundances, fold-changes and *p*-values for Feature #4.

	Feature 5 <i>m/z</i> 613.01, 3.79 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)		
1C_01 1C_02 1C_03	27.39 27.43 30.04	28.29	1.24	20.1	4.4E-03		
2D_01 2D_02 2D_03	1.36 1.45 1.42	1.41	0.04	20.1			
3C_01 3C_02 3C_03	5.66 5.44 5.74	5.61	0.12	15.6	1.0E-02		
4D_01 4D_02 4D_03	94.05 85.30 83.34	87.57	4.66				
5C_01 5C_02 5C_03	17.34 15.74 17.13	16.74	0.71	1.0	4 2E±02		
6D_01 6D_02 6D_03	16.07 16.33 16.96	16.45	0.37	1.0	4.2E+02		

Table S.6.Normalized abundances, fold-changes and *p*-values for Feature #5.

Feature 6 <i>m/z</i> 104.17, 1.49 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	21.28 21.19 20.87	21.11	0.18	1.2	1.3	
2D_01 2D_02 2D_03	27.71 28.45 25.63	27.26	1.20	1.3		
3C_01 3C_02 3C_03	34.93 35.69 37.96	36.19	1.29	2.3	1.5E-02	
4D_01 4D_02 4D_03	84.99 80.70 78.97	81.55	2.53			
5C_01 5C_02 5C_03	23.26 24.85 25.21	24.44	0.85	14	9 3E 02	
6D_01 6D_02 6D_03	34.34 33.57 34.72	34.21	0.48	1.4	9.3E-02	

Table S.7.Normalized abundances, fold-changes and *p*-values for Feature #6.

Feature 7 <i>m/z</i> 705.95, 4.64 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	37.77 31.75 37.44	35.65	2.76	7.4	6 5E 02	
2D_01 2D_02 2D_03	4.54 4.44 5.55	4.84	0.50	7.4	0.3E-02	
3C_01 3C_02 3C_03	12.85 8.88 4.30	8.67	3.49	22.1	4.7E-04	
4D_01 4D_02 4D_03	187.43 193.29 195.32	192.01	3.35			
5C_01 5C_02 5C_03	38.26 31.97 33.03	34.42	2.75	23	1.9F-02	
6D_01 6D_02 6D_03	79.72 81.37 78.20	79.76	1.29	2.3	1.9E-02	

Table S.8.Normalized abundances, fold-changes and *p*-values for Feature #7.

	Feature 8 <i>m/z</i> 823.32, 4.64 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)		
1C_01 1C_02 1C_03	30.43 29.31 29.73	29.82	0.46	68	6.3E-04		
2D_01 2D_02 2D_03	4.53 3.66 5.00	4.40	0.55	6.8			
3C_01 3C_02 3C_03	7.15 7.03 3.08	5.75	1.89	29.8	1.9E-04		
4D_01 4D_02 4D_03	175.74 170.48 168.89	171.70	2.93				
5C_01 5C_02 5C_03	30.50 27.13 26.41	28.01	1.78	2.5	1.1E-02		
6D_01 6D_02 6D_03	69.81 70.48 66.87	69.05	1.57				

Table S.9.Normalized abundances, fold-changes and *p*-values for Feature #8.

Feature 9 m/z 827.82, 4.58 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	159.75 145.99 166.89	157.54	8.67	11.9	1.5E-02	
2D_01 2D_02 2D_03	12.75 10.76 16.60	13.37	2.43	11.8		
3C_01 3C_02 3C_03	38.04 31.69 7.06	25.60	13.36	10.4	9.7E-03	
4D_01 4D_02 4D_03	268.45 263.04 266.60	266.03	2.25			
5C_01 5C_02 5C_03	130.72 115.75 123.75	123.40	6.12	2.0	1.1E-02	
6D_01 6D_02 6D_03	250.24 241.32 244.45	245.34	3.69			

Table S.10.Normalized abundances, fold-changes and *p*-values for Feature #9.

	Feature 10 <i>m/z</i> 152.11, 2.30 min							
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)			
1C_01 1C_02 1C_03	12.37 10.01 10.51	10.96	1.01	4.4	2.2E.01			
2D_01 2D_02 2D_03	2.08 2.67 2.72	2.49	0.29	4.4	2.2E-01			
3C_01 3C_02 3C_03	4.54 5.05 5.16	4.92	0.27	17.1	2.05.02			
4D_01 4D_02 4D_03	88.62 81.48 81.53	83.88	3.35	17.1	3.2E-03			
5C_01 5C_02 5C_03	18.37 19.25 18.70	18.77	0.36	3.6	2 5E-04			
6D_01 6D_02 6D_03	65.54 68.03 66.62	66.73	1.02	3.6	2.5E-04			

Table S.11.Normalized abundances, fold-changes and *p*-values for Feature #10.

Feature 11 <i>m/z</i> 184.11, 1.53 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	6.14 5.74 5.59	5.82	0.23	3.5	4.0E-02	
2D_01 2D_02 2D_03	1.98 1.58 1.39	1.65	0.25	3.5		
3C_01 3C_02 3C_03	18.82 20.35 20.93	20.03	0.89	3.7	2.2E-03	
4D_01 4D_02 4D_03	76.97 75.48 72.35	74.93	1.93			
5C_01 5C_02 5C_03	5.75 6.87 5.63	6.08	0.56	15.8	8 4E-05	
6D_01 6D_02 6D_03	98.02 95.57 94.59	96.06	1.44	15.8	8.4E-05	

Table S.12. Normalized abundances, fold-changes and *p*-values for Feature #11.

Feature 12 <i>m/z</i> 137.10, 3.94 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	160.13 130.10 155.52	148.58	13.20	1.3	2.2E+01	
2D_01 2D_02 2D_03	206.12 181.94 178.94	189.00	12.16			
3C_01 3C_02 3C_03	99.71 106.99 111.38	106.03	4.81	2.0	1.4E-01	
4D_01 4D_02 4D_03	218.17 208.63 193.64	206.81	10.10			
5C_01 5C_02 5C_03	148.78 139.75 128.65	139.06	8.24	1.5	2.0E-01	
6D_01 6D_02 6D_03	206.67 212.36 210.33	209.79	2.36			

Table S.13.	Normalized abundances,	fold-changes and	<i>p</i> -values for	Feature #12.
			P	

Feature 13 <i>m/z</i> 246.19, 4.99 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	3.69 3.26 3.91	3.62	0.27	1.9	4.5E-01	
2D_01 2D_02 2D_03	6.63 7.34 6.43	6.80	0.39			
3C_01 3C_02 3C_03	5.64 3.97 5.54	5.05	0.76	1.1	2.7E+02	
4D_01 4D_02 4D_03	4.67 4.29 4.70	4.55	0.19			
5C_01 5C_02 5C_03	3.18 3.32 2.79	3.10	0.22	67.8	0.05.07	
6D_01 6D_02 6D_03	209.56 208.15 211.83	209.85	1.52		2.71-00	

Table S.14.Normalized abundances, fold-changes and *p*-values for Feature #13.

Feature 14 m/z 137.10, 2.68 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	72.95 81.97 78.58	77.83	3.72	3.3	1.2E-02	
2D_01 2D_02 2D_03	254.93 268.00 243.99	255.64	9.81			
3C_01 3C_02 3C_03	71.24 73.19 83.20	75.87	5.24	3.5	8.7E-04	
4D_01 4D_02 4D_03	265.46 268.27 261.99	265.24	2.57			
5C_01 5C_02 5C_03	114.19 119.30 115.82	116.44	2.13	2.6	2.45.02	
6D_01 6D_02 6D_03	308.29 293.77 290.96	297.68	7.59		5.46-05	

Table S.15.Normalized abundances, fold-changes and *p*-values for Feature #14.

Feature 15 <i>m/z</i> 152.11, 3.93 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	34.02 26.69 33.96	31.56	3.44	2.1	3.0E-01	
2D_01 2D_02 2D_03	70.91 65.79 63.11	66.60	3.24			
3C_01 3C_02 3C_03	7.31 7.11 8.41	7.61	0.57	5.7	2.8E-02	
4D_01 4D_02 4D_03	46.82 42.24 40.82	43.29	2.56			
5C_01 5C_02 5C_03	41.50 39.91 36.89	39.44	1.91	1.7	1.15.01	
6D_01 6D_02 6D_03	65.51 70.43 65.94	67.29	2.22		1.112-01	

Table S.16. Normalized abundances, fold-changes and <i>p</i> -values for Feature	re #15.
---	---------

Feature 16 <i>m/z</i> 203.09, 1.48 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	87.57 79.66 87.08	84.77	3.62	1.0	2.0E+02	
2D_01 2D_02 2D_03	84.01 81.81 76.83	80.88	3.01			
3C_01 3C_02 3C_03	71.68 71.84 75.53	73.02	1.78	7.3	6.3E-04	
4D_01 4D_02 4D_03	10.02 9.67 10.22	9.97	0.23			
5C_01 5C_02 5C_03	39.69 41.82 38.84	40.12	1.25	3.5	5.0E-03	
6D_01 6D_02 6D_03	12.17 10.88 11.12	11.39	0.56			

Table S.17.Normalized abundances, fold-changes and *p*-values for Feature #16.

Feature 17 <i>m/z</i> 437.13, 9.31 min						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	119.37 111.26 105.22	111.95	5.80	1.1	4.6E+01	
2D_01 2D_02 2D_03	96.68 105.65 94.86	99.06	4.72			
3C_01 3C_02 3C_03	125.05 113.68 120.62	119.78	4.68	3.2	3.4E-02	
4D_01 4D_02 4D_03	43.04 32.73 35.18	36.98	4.40			
5C_01 5C_02 5C_03	99.13 81.75 76.93	85.94	9.54	1.9		
6D_01 6D_02 6D_03	50.84 44.27 43.61	46.24	3.26		3.3	

Table S.18.N	Normalized abundances,	fold-changes	and <i>p</i> -values	for Feature #17.
--------------	------------------------	--------------	----------------------	------------------

Feature 18 m/z 387.15						
	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)	
1C_01 1C_02 1C_03	86.43 87.11 85.69	86.41	0.58	1.0		4.7E+02
2D_01 2D_02 2D_03	82.64 93.62 86.69	87.65	4.54		4.7E+02	
3C_01 3C_02 3C_03	120.37 129.84 142.42	130.88	9.03	7.0	4.2E-02	
4D_01 4D_02 4D_03	16.64 18.53 20.67	18.62	1.65			
5C_01 5C_02 5C_03	62.81 59.46 59.89	60.72	1.49	2.1		
6D_01 6D_02 6D_03	29.30 30.03 29.50	29.61	0.31		J.JE-03	

Table S.19. Normalized abundances, fold-changes and <i>p</i> -values for Feature	e #18.
---	--------

Expression of Thymosins β4 and β10 by Peak Areas for 8+ Species

The region containing thymosins β 4 and β 10 was mobility-extracted from the IM-MS spectra of each sample (18 total) using a defined selection rule similar to that shown in Figure 1. Total abundances of the 6+ charge states of thymosins β 4 and β 10 were determined by summing the peak areas in the regions of the mobility-extracted mass spectrum centered about the isotopic distribution for the 8+ species, *m*/*z* 827.5-829.5 and *m*/*z* 823.0-825.0, respectively. All comparisons are made between matched disease and control pairs. Foldchanges were calculated by dividing the larger of the two tissues (control or diabetic) by the smaller to obtain numbers \geq 1. The student's t-test with two-tails, equal variance, and α =0.05 was used to determine significance. The Bonferroni correction was applied to all p-values to account for multiple testing.

	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)
1C_01 1C_02 1C_03	206039 208877 198867	204594	4212	3.0	2.9E-02
2D_01 2D_02 2D_03	60145 61216 80429	67263	9320		
3C_01 3C_02 3C_03	60755 47597 16387	41580	18606	38.1	4.5E-04
4D_01 4D_02 4D_03	1631322 1544283 1579135	1584913	35768		
5C_01 5C_02 5C_03	346773 308806 283154	312911	26134	3.8	2.2E-03
6D_01 6D_02 6D_03	1217249 1184695 1163585	1188510	22074		

Table S.20. Abundances of Thymosin $\beta 4$ (6+) from IM-Extracted MS Peak Areas.

	Norm. Int.	Average	Standard Dev.	Fold-change	<i>p</i> -value (corrected)
1C_01 1C_02 1C_03	45840 48722 42673	45745	2470	1.2	2.3
2D_01 2D_02 2D_03	34868 35239 34954	35020	159	1.5	
3C_01 3C_02 3C_03	16016 15619 8612	13416	3401	76.0	8.9E-04
4D_01 4D_02 4D_03	1062637 1000684 993786	1019036	30959	70.0	
5C_01 5C_02 5C_03	96636 77735 65772	80048	12706	19	5.3E-03
6D_01 6D_02 6D_03	389273 389153 373514	383980	7401	4.0	

Table S.21. Abundances of Thymosin $\beta 10$ (6+) from IM-Extracted MS Peak Areas.

Figure S.7. Expression of thymosins $\beta 4$ and $\beta 10$ across the breast tissue samples. Relative abundances were calculated from the peaks areas of the isotopic distribution for the 6+ charge state of thymosins $\beta 4$ and $\beta 10$.

Supplementary Material (ESI) for Molecular BioSystems This journal is © the Royal Society of Chemistry 2014

MS/MS Spectra for Features in Table 1

Figure S.8. Mobility- and chromatography-extracted (2.62 *ms*; 1.51 min) DIA MS/MS spectrum of Feature #1, glycerophosphocholine (m/z 258.13).

Figure S.9. Mobility- and chromatography-extracted (3.11 *ms*; 2.33 min) DIA MS/MS spectrum of Feature #2, adenosine monophosphate (m/z 348.09).

Figure S.10. Mobility- and chromatography-extracted (1.52 *ms*; 2.33) DIA MS/MS spectrum of Feature #3, adenine/fragment of adenosine monophosphate (m/z 136.07). The region m/z 50-125 is shown at 5X magnification for clarity.

Figure S.11. Mobility- and chromatography-extracted (3.04 *ms*; 2.45 min) DIA MS/MS spectrum of Feature #4, glutathione (m/z 308.10).

Figure S.12. Mobility- and chromatography-extracted (5.66 *ms*; 3.76 min) DIA MS/MS spectrum of Feature #5, oxidized glutathione (m/z 613.19).

Figure S.13. Mobility- and chromatography-extracted (4.76 *ms*; 4.56 min) DIA MS/MS spectrum of Feature #7-9, thymosins β 4 and β 10 (*m/z* 705.94, 823.44, 827.76).

Figure S.14. Mobility- and chromatography-extracted (4.76 *ms*; 4.56 min) DIA MS/MS spectrum of Features #7-9, thymosins β 4 and β 10 (*m*/*z* 705.94, 823.44, 827.76).

Thymosin β4 Fragmentation			Thymosin β10 Fragmentation			
m/z	charge	fragment	m/z	charge	fragment	
619.1161	8+	MH-H ₂ O ⁺⁸	635.1545	5+	y_{27} -NH ₃ ⁺⁵	
635.3738	5+	$b_{27}-H_2O^{+5}$	638.5611	5+	y ₂₇ ⁺⁵	
655.9865	5+	a_{28}^{+5}	660.7968	5+	y_{28} -NH ₃ ⁺⁵	
661.5927	5+	b_{28}^{+5}	677.2372	7+	$b_{41} + H_2 O^{+7}$	
676.5419	7+	b_{41}^{+7}	689.6857	7+	y ₄₂ ⁺⁷	
679.2603	7+	$b_{41} + H_2 O^{+7}$				
694.9823	7+	b_{42}^{+7}				
745.4326	4+	b_{25}^{+4}				
773.9556	4+	b_{26}^{+4}				
792.1327	6+	$b_{41} + H_2O^{+6}$				
810.8069	6+	b_{42}^{+6}				

 Table S.21.
 Backbone cleavages observed for Thymosin β4 and β10

Figure S.15. Mobility- and chromatography-extracted (1.59 *ms*; 2.26 min) DIA MS/MS spectrum of Feature #10 (m/z 152.06). Fragmentation pattern and mass accuracy suggest the following molecules as potential identifications: 2-hydroxyadenine (C₅H₅N₅O; cLogP: 0.56); 8-hydroxyadenine (C₅H₅N₅O; cLogP: 0.48); and guanine (C₅H₅N₅O; cLogP: -1.16). Also observed at 3.93 min in chromatogram, suggesting this particular species is guanine due to CLogP values.

Figure S.16. Mobility- and chromatography-extracted (1.93 *ms*; 1.51 min) DIA MS/MS spectrum of Feature #11, phosphocholine (m/z 184.08).

Figure S.17. Mobility- and chromatography-extracted (1.52 *ms*; 3.93 min) DIA MS/MS spectrum of Feature #12 (m/z 137.05). Fragmentation pattern and mass accuracy suggest the following molecules as potential identifications: hypoxanthine (C₅H₄N₄O; CLogP: 0.49); allopurinol (C₅H₄N₄O; CLogP: -0.74). Also observed at 2.67 min in chromatogram, suggesting this particular species is hypoxanthine due to CLogP values. Signals at m/z 137, 119, 110 and 94 correspond to Feature #12, while m/z 135 and 110 correspond to feature #15 (m/z 152).

Figure S.18. Mobility- and chromatography-extracted (2.76 *ms*; 5.01 min) DIA MS/MS spectrum of Feature #13 (m/z 246.18). Fragmentation pattern and mass accuracy suggest the following molecules as potential identifications: 2-methylbutyroylcarnitine ($C_{12}H_{23}NO_4$); pivaloylcarnitine ($C_{12}H_{23}NO_4$).

Figure S.19. Mobility- and chromatography-extracted (1.52 *ms*; 2.67 min) DIA MS/MS spectrum of Feature #14 (m/z 137.05). Fragmentation pattern and mass accuracy suggest the following molecules as potential identifications: hypoxanthine (C₅H₄N₄O; CLogP: 0.49); allopurinol (C₅H₄N₄O; CLogP: -0.74). Also observed at 3.93 min in chromatogram, suggesting this particular species is allopurinol due to CLogP values.

Figure S.20. Mobility- and chromatography-extracted (1.52 *ms*; 3.93 min) DIA MS/MS spectrum of Feature #15 (m/z 152.06). Fragmentation pattern and mass accuracy suggest the following molecules as potential identifications: 2-hydroxyadenine (C₅H₅N₅O; cLogP: 0.56); 8-hydroxyadenine (C₅H₅N₅O; cLogP: 0.48); and guanine (C₅H₅N₅O; cLogP: -1.16). Also observed at 2.67 min in chromatogram, suggesting this particular species is hydroxyadenine due to CLogP values. Signals at m/z 137, 119, 110 and 94 correspond to Feature #12, while m/z 135 and 110 correspond to feature #15.

Figure S.21. DIA MS/MS spectrum of Feature #16, a sodiated monosaccharide (m/z 203.05) at 1.5 min.

Figure S.22. DIA MS/MS spectrum of Feature #17 (m/z 437.19) at 9.31 min.

Figure S.23. Mobility- and chromatography-extracted (4.21 *ms*; 9.14 min) DIA MS/MS spectrum of Feature #18, phosphocholine (m/z 387.22).

MS/MS Spectra for Standards

Figure S.24. MS/MS spectrum for 2.86 μ g/ml standard of adenosine 5'-monosphosphate with 0 V collision energy. The area from *m*/*z* 100-150 is shown at 10X magnification for clarity.

Figure S.25. MS/MS spectrum for 2.86 μ g/ml standard of adenosine 5'-monosphosphate (*m/z* 348.09) with 15 V collision energy.

Figure S.26. Mobility-extracted (2.98 *ms*) MS/MS spectrum for 2.12 μ g/ml standard of reduced glutathione (*m/z* 308.11) with 15 V collision energy.

Figure S.27. Mobility-extracted (5.61 *ms*) MS/MS spectrum for 1.1 μ g/ml standard of oxidized glutathione (*m*/*z* 613.18) with 25 V collision energy.

Figure S.28. Mobility-extracted (2.15 *ms*) MS/MS spectrum for 3.6 μ g/ml standard of α -D-glucose (*m/z* 203.07) with 20 V collision energy. The region *m/z* 50-190 is shown at 10X magnification for clarity.