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1 Signalling network reaction rate constants

Parameter Estimate Reaction
k1f 0.01 nM−1 s−1 S+L → SL
k1b 0.059 s−1 SL → S+L
k2 0.1 s−1 SL (+ATP) → SLP (+ADP)
k3f 0.001 s−1 SLP → SP
k3b 0.001 s−1 SP → SLP
k4f 0.0238 nM−1 s−1 SLP+R → SLP·R
k4b 0.001 s−1 SLP·R → SLP+R
k5f 0.0238 nM−1 s−1 SP+R → SP·R
k5b 0.001 s−1 SP·R → SP+R
k6f 19.8 s−1 SLP·R → SL+RP
k6b 0.001 nM−1 s−1 SL+RP → SLP·R
k7f 19.8 s−1 SP·R → S+RP
k7b 0.001 nM−1 s−1 S+RP → SP·R
k8f 0.0238 nM−1 s−1 S+RP → RP·S
k8b 0.2 s−1 RP·S → S+RP
k9 0.5 s−1 RP·S → S+R (+Pi)
k10f 0.001 s−1 SLP·R → SP·R
k10b 0.001 s−1 SP·R → SLP·R
k11 0.0001 s−1 RP → R (+Pi)
k12 0.0001 s−1 SP → S (+Pi)
k13 0.0001 s−1 SLP → SL (+Pi)

Table S1. Rate constants for signalling reactions illustrated in Fig. 1 of the main text. Numbers in the
parameter names correspond to the reaction numbers, and the letters f, b denote forward and backward
reaction rates respectively for reversible reactions. The third column gives the reaction corresponding to
each rate constant—species in brackets were not considered explicitly in the model, and the units for the
rate constants reflect this. Note that 1nM≈1 molecule per cell.

1

Electronic Supplementary Material (ESI) for Molecular BioSystems.
This journal is © The Royal Society of Chemistry 2014



The rate constants used in our signalling model (Fig. 1 main text) are shown in Table S1. All values
were estimated accounting for physical limitations. For example, second-order reactions cannot occur faster
than the diffusion-limited rate. We originally tried to fit in vitro kinetics data from well-studied two-
component systems in order to deduce the parameter values more precisely. However, the model did not
give reasonable results with these data. More specifically, reaction rates were generally unrealistically slow,
leading to signalling response times on the order of cell generation times. We hypothesised that this was
due to the enzymes being much less efficient in vitro than in vivo. Many rate constants also have not yet
been measured in the laboratory. Therefore, we did not rely heavily on published data regarding specific
reaction rates for specific two-component systems. Instead, we focused on matching our model with more
global properties. Examples of these global properties are a reasonably sensitive input-output response
curve, reasonable response times and observed robustness of the output with respect to variations in the
total protein concentrations.

For the autoregulatory studies, further reactions were considered relating to protein production, degra-
dation, dimerisation and DNA-binding. These reaction rate constants were estimated, since measured values
can vary greatly depending on factors such as the promoter strength and incorporation of activated degra-
dation, and we were not aiming to match a particular system in our study. The parameters used that were
found to give bistability are shown in Table S2. Note that kd2 can be interpreted not only as a protein
degradation rate, but also as a cell growth rate. This alternative interpretation was used in our final study
on the effects of cell growth and division on the system.

Parameter Estimated Value Reaction
kp1 0.003 nM s−1 ∅→ mRNA (constitutive)
kp2 0.1 nM s−1 ∅→ mRNA (RP-activated)

kp3 0.002 s−1 mRNA → mRNA+R,
mRNA → mRNA+S

kd1 0.002 s−1 mRNA → ∅

kd2 0.0005 (0.00025) s−1

R→ ∅,
RP → ∅,
S → ∅,
SP → ∅,
SLP → ∅

kDimerf 0.001 nM−1 s−1 RP+RP → RP2

kDimerb 1 s−1 RP2 → RP+RP
kActf 0.001 nM−1 s−1 RP2+DNA → DNA*
kActb 0.01 s−1 DNA* → RP2+DNA

Table S2. Rate constants for the additional reactions considered when modelling autoregulatory signalling
(producing bistability). These constants were used for simulations both with and without cell division; the
only difference was in the choice of kd2. For this case, the parameter for no cell division is shown, with the
value used for cell division simulations also shown in brackets. The value is lower for cell division in order
to allow protein populations to at least double within one cell cycle. In the parameter names, ‘p’ denotes
reactions relating to mRNA/protein production, ‘d’ denotes degradation, ‘Dimer’ denotes dimerisation,
and ‘Act’ denotes activation of the RP-responsive promoter. DNA and DNA* species thus represent the
inactive and active states of the RP-responsive promoter respectively. Note that kp3 and kd2 correspond
to multiple reactions, in these cases all the relevant reactions are listed.
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Finally, we used (stochastic) delay times in transcription and translation using average transcription/translation
rates from Escherichia coli (E. coli) and sequence lengths from the PhoP/PhoQ two-component system (Ta-
ble S3).

Reaction Distribution Mean Variance
Rp1a gamma(0.018,672) 12.096 8128.512
Rp2b gamma(0.018,1461) 26.298 38421.378
Rp3a gamma(0.059,223) 13.157 2934.011
Rp3b gamma(0.059,486) 28.674 13935.564
Rp2 gamma(0.018,672) 12.096 8128.512

Table S3. An overview of all reactions that were modelled with a delay. In all cases, a
gamma-distribution was used; values shape and scale parameters are given in brackets.

2 Two-component signalling robustness - mathematical analysis
Considering the signalling network shown in Fig. 1 of the main text, we can show mathematically that the
output RP levels are robust to variations in total numbers of response regulator and histidine kinase proteins
(RT and ST ). This analysis requires minimal assumptions to be made, which are described next.

In steady state, there should be no net accumulation or loss of phosphate from the system (so input and
output rates should balance). Using mass-action kinetics, and rate constant labels shown in Table S1, we
thus have:

d[P ]

dt
= k2[SL]− k9[RP · S] = 0 (S1)

where we have represented phosphate by P and used square brackets to denote species concentrations (since
this analysis is deterministic and hence assumes continuous variables). The effect of autodephosphorylation
reactions 11, 12, and 13 is negligible compared to reactions 2 and 9 (Table S1). For this reason, we neglected
these reactions. Now, if we assume that reaction 1 (S+L↔ SL) occurs relatively rapidly, such that the three
species are (approximately) in thermodynamic equilibrium, we have:

k1f [S][L] = k1b[SL] (S2)

Rewriting gives

[SL] =
k1f

k1b
[S][L] (S3)

Furthermore, in steady state [RPS] is constant, so considering reactions 8 and 9 we have:

k8f [RP ][S] = (k8b+ k9)[RP · S] (S4)

Rewriting gives

[RP · S] = k8f

k8b+ k9
[RP ][S] (S5)

Now substituting Equations (S3) and (S5) in Equation (S1) we find:

dP

dt
= k2

k1f

k1b
[S][L]− k9 · k8f

k8b+ k9
[RP ][S] = 0 (S6)

Assuming [S] 6= 0 (valid for the deterministic case), we can divide the above equation by [S] to obtain:
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[RP ] = k2
k1f

k1b

(k8b+ k9)

k9 · k8f
[L] (S7)

which is the remarkable result that in steady state the concentration of RP increases linearly in proportion to
the signal strength, independent of any other species in the network. We have, however, implicitly assumed
that [RP ] can increase without bound in this analysis. In reality, [RP ] is bounded by RT , which explains
the saturating profile shown in Fig. 2 of the main text.

3 Converting Deterministic Bistability Model Parameters to Stochas-
tic Model input

In the deterministic model, we model the proportion of time for which DNA is activated by the Hill function,

P (active) =
[RP ]n

Kdn + [RP ]n
(S8)

where Kd is the microscopic dissociation constant of RP to its regulatory site, n is the multimerisation of
RP required to bind to DNA, [RP ] is the concentration of RP in nM, and 1 nM is approximately equivalent
to 1 molecule per cell in E. coli.

In order to make our stochastic model as realistic as possible, we wished to decompose the autoregulation
of RP into the two fundamental processes of RP multimerisation and DNA binding, using only mass-action
rate constants to parametrise the kinetics (Fig. S1). Since dimers are the simplest multimers that can lead
to bistable RP expression, and the E. coli response regulator protein OmpR is known to dimerise before
having regulatory functionality1, we chose n = 2. Below we relate Kd to the four rate constants defined in
Table S2 and used in the stochastic model.

RP RP

(RP)2

DNA DNA

1

2

*
Fig. S1. RP dimerisation and binding to autoregulatory DNA site. Reactions are labelled ‘1’ and ‘2’
instead of ‘Dimer’ and ‘Act’ respectively (from Table S2) for ease of reading, but should not be confused
with reactions 1 and 2 from the signalling network diagram in Fig. 1 of the main text. Products of forward
reactions are indicated by pointed arrows, while products of back-reactions are indicated by triangular
arrows. Reaction rates k1f, k1b, k2f, k2b referred to in the text correspond to the forward and backward
rates of reaction 1 and the forward and backward rates of reaction 2 respectively.

In steady state, the time-averaged concentration of active and inactive RP-DNA binding sites in the cell
(denoted [DNA∗] and [DNA] respectively) is constant, hence:

k2f [RP2][DNA] = k2b[DNA∗] (S9)

Similarly, the time-averaged concentration of dimerised RP (denoted RP2) is also constant in steady state,
hence:
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k1f [RP ]2 + k2b[DNA∗] = k1b[RP2] + k2f [RP2][DNA] (S10)

By rearranging Equations (S9) and (S10), we obtain, respectively:

[DNA∗]
[DNA]

=
k2f

k2b
[RP2] (S11)

[RP2] =
k1f [RP ]2 + k2b[DNA∗]

k1b+ k2f [DNA]
(S12)

Next, combining both Equations (S11) and (S12) then yields:

[DNA∗]
[DNA]

=
k2f

k2b
· k1f [RP ]

2 + k2b[DNA∗]
k1b+ k2f [DNA]

(S13)

Now, using the Hill equation,

[DNA∗]
[DNA] + [DNA∗]

=
[RP ]2

K2
d + [RP ]2

, (S14)

we deduce that when [RP ] = Kd, after time-averaging we have [DNA∗] = [DNA] = 0.5. Note that a Hill
coefficient of 2 has been assumed, which can be interpreted as RP binding only when it is in a dimerised
form. Substituting this result in Equation (S13) gives the final relation:

K2
d =

k2b

k2f
· k1b
k1f

(S15)

We can estimate Kd using the following arguments. Suppose first that there are no competing binding
sites for RP in the cell. Then it is reasonable to suppose that having two RP molecules per cell (i.e. one
RP dimer) may be sufficient to activate [DNA∗] half the time. This suggests that—using units of nM for
concentrations—we can estimate that Kd ≈ 2. However, since RP molecules are responsible for regulating
the entire cellular response to L in the two-component system, there are usually multiple regulatory sites
on the genome to which RP can bind. For example, estimates for the number of genes activated by the
phosphorylated PhoP response regulator in E. coli range from 40 up to 2362,3. If we assume that RP has
the same affinity to all potential binding sites, the effective number of RP molecules available for binding to
a particular binding site is divided by two times the total number of sites (since each site is only bound by
an RP dimer). Denoting m as the total number of binding sites in the cell, we can modify Equation (S14)
to account for this effect as:

[DNA∗]
[DNA] + [DNA∗]

=
([RP ]/2m)2

K2
d + ([RP ]/2m)2

=
[RP ]2

(2mKd)2 + [RP ]2
(S16)

where [DNA∗] and [DNA] still refer only to the activation state of the autoregulatory binding site, and
2mKd can be considered as the new ‘effective’ dissociation constant. Thus, if we consider m = 50, we
implement an effective Kd of 100. Substituting this into Equation (S15) then gives:

10000 =
k2b

k2f
· k1b
k1f

(S17)

Any combination of the four parameters k1f, k1b, k2f, k2b that satisfies Equation (S17) is sufficient to
account for a Kd choice of 100. However, additional constraints were placed on k2f and k2b so that
transitions between activated and basal transcription rates occurred on a minute timescale; this allows
multiple transitions to occur during a single cell cycle yet still allows a degree of transcriptional ‘bursting’,
necessary to produce bistability. The final parameters chosen are shown in Table S2.
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4 StochPy Cell Division extension
Important sources of non-genetic cellular heterogeneity are cell growth and division. Cell division is a
stochastic process which can have a significant impact on molecular copy numbers in single-cells. An evident
source of cell-to-cell heterogeneity is the stochastic partitioning of molecules at cell division which distributes
most molecules unequally between both daughter cells4. In addition, cell-to-cell heterogeneity can also be
caused by heterogeneity of cell volume, which is caused by three different processes: (1) heterogeneity in the
mother cell volume at division, (2) imprecise volume division from mother to daughter cells, and (3) volume
growth rate heterogeneity. We incorporated, with the exception of a heterogeneity of growth rates, these
sources of non-genetic cellular heterogeneity in Stochastic modelling in Python (StochPy)5.

Initial cell

2. Calculate Interdivision Time

3. Do Stochastic Simulation

Mother cell

Daughter cells

1. Draw first end volume (Φ)
Selected daughter

4. Partition Volume (K)

6. Draw next end volume (Φ)

7. Select Daughter to follow

5. Partition Species (binomial)

Fig. S2. Cartoon which illustrates how StochPy incorporates cell division events in stochastic simulations.
Blue triangles and red squares represent molecules which are stochastically partitioned at cell division
between both daughters. In this example, the largest daughter cell—which also has a larger chance to be
selected—is selected for the next generation. The stochastic simulation is interrupted at each cell division
and stops when (1) the number of generations is reached, (2) the desired end time is reached, (3) the
desired number of time steps is reached, or (4) all reactions are exhausted.

An overview of the incorporation of cell division into StochPy is shown in Figure S2. Note that a more
detailed explanation will be provided when the next version of StochPy is released. Within StochPy, the
growth function, initial cell volume, specific division properties, volume dependencies, and if present in your
model, exact and non-dividing species have to be set before a simulation can be initiated. Of course, for each
of these the default values can also be used. StochPy supports both exponential and linear volume growth.
The time for a given daughter cell to reach division is called the interdivision time (IDT), which is determined
from the specified growth function, the initial volume and the volume at division. By default, the initial
cell volume is set to 1 fl, which corresponds to the cell volume of E. coli. Note that both the cell volume at
division and the cell volume partitioning ratios are drawn from user-specified probability density functions
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φ and K, respectively. Modelling processes in a non-constant volume environment affects the propensities
of volume-dependent reactions, which are second and higher-order reactions. In StochPy, volume-dependent
propensities are, by default, updated upon a change in cell volume as is shown in Equation (S18).

aV (t) =
a(t)

V (t)order−1
with order ≥ 2 (S18)

Here, a(t) is the reaction propensity in an environment with a constant cell volume and V (t) represents the
time-dependent cell volume. Alternatively, StochPy allows users to modify the volume-dependency of each
individual reaction. More specifically, StochPy allows users to specify, for each reaction, the order of the
volume dependency. Note that cell volume is not modelled as an additional (continuous) reaction, but is
updated after firing of each individual reaction and is therefore a discrete variable.

Finally, in StochPy users can specify species which should not be subject to stochastic partitioning at cell
division. More specifically, StochPy distinguishes between non-dividing species (e.g. DNA if its replication
is not modelled) and exact-dividing species (e.g. chromosomes). All other species are subject to stochastic
partitioning at cell division which, in StochPy, also depends on the daughter cell volumes. Namely, a daughter
with a larger volume has the tendency to inherit more molecules than the other daughter. More specifically,
the probability that a molecule is inherited by a daughter cell is directly proportional to the volume ratio of
daughter and mother cell:

P (molecule inheritance|Vd1
, Vm) =

Vd1

Vm
(S19)

Here, Vd1
is the daughter cell volume and Vm is the mother cell volume. The number of molecules, with copy

number n, inherited by daughter d1 can thus be drawn as a random sample from a binomial distribution
with n number of trials and success probability Vd1

Vm
in each trial. Note that StochPy tracks a single lineage

through time, which means that after division, only one daughter is selected with a certain probability for
the next generation.

4.1 Settings for reproduction of results
In Table S4, we provide the settings used for the explicit simulation of cell division.

Setting Value
Initial cell volume 1 fl
Exponential Growth rate 0.00025 s−1

φ (mother cell volume) Beta(2,2) + 2
K (partition distribution) Beta(5,5)
Non-dividing species DNA and DNA*

Table S4. An overview of the settings used in the cell division simulations. Note that an exponential
growth rate of 0.00025 s−1 corresponds to a doubling time of about 46 minutes.
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