Supplemental Information

Phosphorylation of Ser8 promotes a novel topology of zinc-induced dimerization of amyloid- $\boldsymbol{\beta}$ metal-binding domain

Alexandra A. Kulikova, ${ }^{a}$ Philipp O. Tsvetkov, ${ }^{a}$ Maria I. Indeykina, ${ }^{a, b}$ Igor A. Popov, ${ }^{b}$ Sergey S. Zhokhov, ${ }^{c}$ Andrey V. Golovin, ${ }^{d}$ Vladimir I. Polshakov, ${ }^{c}$ Evgeny Nudler, ${ }^{e}$ Sergey A. Kozin ${ }^{a, f}$ and Alexander A. Makarov*a
${ }^{a}$ Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov street 32, 119991 Moscow, Russia
${ }^{b}$ Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina street 4, 119334 Moscow, Russia
${ }^{c}$ Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovski prospect 31/5, 119191 Moscow, Russia
${ }^{d}$ Bioengineering and Bioinformatics Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
${ }^{e}$ Howard Hughes Medical Institute, New York University School of Medicine, New York, 10016 New York, USA
${ }^{f}$ Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Pogodinskaya street 10, 119832 Moscow, Russia
*E.mail: aamakarov@eimb.ru

Table of contents

Figure S1 Fragment of the NOESY spectrum of $\mathrm{pA} \beta(1-16)$ S2
Figure S2 NMR spectra of $\mathrm{pA} \beta(1-16)$ in the free state and in the presence of ZnCl_{2} S3
Figure S3 NMR titration experiments of $\mathrm{pA} \beta(1-10)$ with zinc ions S4
Figure S4 NMR titration experiments of $\mathrm{pA} \beta(11-16)$ with zinc ions S5
Table S1 Chemical shifts of $\mathrm{pA} \beta(1-16)$ in the free state and in the presence of ZnCl_{2} S6
Details of quantum-mechanical/molecular-mechanical calculations S7
References S8

Fig. S1. Fragment of NOESY spectrum (200 ms mixing time) of $\mathrm{pA} \beta(1-16)$ at concentration 1.4 mM , recorded at $10^{\circ} \mathrm{C}$ in 10 mM Bis-Tris- $\mathrm{d}_{19}, 90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{D}_{2} \mathrm{O}, \mathrm{pH} 6.9$. The figure shows assignments of sequential correlations between backbone amide protons.

Figure S2. $600 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectra of $\mathrm{pA} \beta(1-16)$ at concentration 1.8 mM in its free state and after addition of twofold molar excess of ZnCl_{2}. Spectra were collected at $10^{\circ} \mathrm{C}$ in 10 mM Bis-Tris- $\mathrm{d}_{19}, 90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{D}_{2} \mathrm{O}, \mathrm{pH} 6.9$.

Figure S3. Amide region (6.7-9.2 ppm) of the NMR spectra of $\mathrm{pA} \beta(1-10)$ at concentration 0.5 mM for the free peptide and series of samples with increased concentration of Zn^{2+}. Spectra were collected in 10 mM Bis-Tris- $\mathrm{d}_{19}, 90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{D}_{2} \mathrm{O}, \mathrm{pH} 6.8$. Labels on the right-hand side represent molar ratio of [peptide]:[Zn^{2+}] in each sample. Assignments of the representative resonances are shown.

Figure S4. Representative regions of the NMR spectra of $A \beta(11-16)$ at concentration 0.5 mM for the free peptide and series of samples with increased concentration of Zn^{2+}. Spectra were collected in 10 mM Bis-Tris- $\mathrm{d}_{19}, 100 \% \mathrm{D}_{2} \mathrm{O}$, at measured pD 7.2 . Labels on the right-hand side represent molar ratio of [peptide]: $\left[\mathrm{Zn}^{2+}\right]$ in each sample. Assignments of the representative resonances are shown.

Table S1. Chemical shifts of $\mathrm{pA} \beta(1-16)$ at concentration 1.8 mM in the free state (black) and in the presence of 5-fold molar excess of ZnCl_{2} (red). Significant line broadening of the signals in the presence of zinc ions does not allow to detect many signals in NMR spectra of the $\mathrm{Zn}{ }^{2+}-\mathrm{pA} \beta(1-16)$ complex.

Resid	Chemical shift, ppm											
	${ }^{15} \mathrm{~N}$	HN	H α	Hß1	Hß2	H $\gamma 1$	H $\gamma 2$	Other ${ }^{1} \mathrm{H}$	Ca	C β	C γ	Other ${ }^{13} \mathrm{C}$
D 1	126.9	$\begin{aligned} & \hline 8.371 \\ & 8.405 \end{aligned}$	$\begin{aligned} & 4.550 \\ & 4.545 \end{aligned}$	$\begin{aligned} & 2.702 \\ & 2.702 \end{aligned}$	$\begin{aligned} & 2.594 \\ & 2.592 \end{aligned}$	-	-	-	54.492	41.314	-	-
A 2	124.1	$\begin{array}{r} 8.475 \\ 8.504 \\ \hline \end{array}$	$\begin{aligned} & 4.265 \\ & 4.265 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.369 \\ 1.369 \\ \hline \end{array}$	-	-	-	-	52.590	19.056	-	-
E 3	119.7	$\begin{aligned} & \hline 8.367 \\ & 8.405 \\ & \hline \end{aligned}$	4.167 4.171	$\begin{aligned} & \hline 1.888 \\ & 1.893 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.888 \\ & 1.893 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.180 \\ & 2.185 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.056 \\ & 2.072 \\ & \hline \end{aligned}$	-	56.570	30.135	36.105	-
F 4	121.2	$\begin{aligned} & 8.245 \\ & 8.310 \end{aligned}$	$\begin{aligned} & 4.582 \\ & 4.541 \end{aligned}$	$\begin{aligned} & 3.081 \\ & 3.007 \end{aligned}$	$\begin{aligned} & 3.009 \\ & 3.007 \end{aligned}$	-	-	$\begin{aligned} & \text { H } \delta * 7.1997 .155 \\ & H \varepsilon^{*} 7.2837 .235 \\ & H \zeta \quad 7.252 \\ & \hline \end{aligned}$	57.450	39.431	-	$\begin{array}{lll} \hline \text { C } \delta & 131.722 \\ \text { C } & 131.313 \\ \text { C } \zeta & 129.774 \\ \hline \end{array}$
R 5	$\begin{gathered} 123.8 \\ \mathrm{~N} \varepsilon 84.33 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 8.193 \\ & 8.129 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.264 \\ 4.267 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.735 \\ & 1.702 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.659 \\ & 1.627 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.518 \\ & 1.498 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.518 \\ & 1.498 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \delta * 3.1353 .124 \\ & \mathrm{H} \varepsilon \\ & \hline \end{aligned}$	55.397	31.082	26.914	C $\delta 43.019$
H 6	122.0	$\begin{gathered} \hline 8.706 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4.617 \\ & \text { NA } \\ & \hline \end{aligned}$	$\begin{gathered} 3.194 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.100 \\ \text { NA } \\ \hline \end{gathered}$	-	-	$\begin{array}{ll} \hline \mathrm{H}_{2} & 7.138 \\ \mathrm{H} \varepsilon_{1} & 8.253 \\ \hline \end{array}$	55.569	29.880	-	$\begin{array}{ll} \hline \mathrm{C}_{2} & 119.808 \\ \mathrm{Ce}_{1} & 136.834 \\ \hline \end{array}$
D 7	123.6	$\begin{gathered} \mathbf{8 . 5 8 1} \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 4.651 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 2.733 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 2.654 \\ \text { NA } \\ \hline \end{gathered}$	-	-	-	54.091	41.422	-	
S 8	118.7	$\begin{aligned} & \hline 9.203 \\ & \text { NA } \\ & \hline \end{aligned}$	$\begin{aligned} & 4.440 \\ & \text { NA } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.093 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4.093 \\ & \text { NA } \\ & \hline \end{aligned}$	-	-	-	58.593	65.362	-	-
G 9	110.6	$\begin{aligned} & \hline 8.582 \\ & 8.685 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 3.943,3.879 \\ 3.885,3.885 \\ \hline \end{array}$	-	-	-	-	-	45.383	-	-	${ }^{-}$
Y 10	120.4	$\begin{aligned} & \hline 8.026 \\ & 7.979 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.470 \\ 4.490 \\ \hline \end{array}$	$\begin{aligned} & \hline 3.040 \\ & 3.025 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.040 \\ & 3.025 \\ & \hline \end{aligned}$	-		$\begin{aligned} & \hline \mathbf{H} \delta^{*} 7.0847 .063 \\ & H \varepsilon^{*} 6.7696 .773 \\ & \hline \end{aligned}$	58.606	38.769	-	$\begin{array}{ll} \hline \text { C } \delta & 133.139 \\ \text { C } \varepsilon & 131.313 \\ \hline \end{array}$
E 11	121.9	$\begin{gathered} \hline \mathbf{8 . 4 4 6} \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.177 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 1.956 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.885 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.217 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.175 \\ \text { NA } \\ \hline \end{gathered}$	-	56.182	30.138	36.146	-
V 12	120.6	$\begin{aligned} & \hline 8.098 \\ & 8.144 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.910 \\ & 3.912 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.950 \\ & 1.960 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 0.881 \\ & 0.879 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.766 \\ & 0.778 \\ & \hline \end{aligned}$	-	63.027	32.344	$\begin{array}{r} 20.789 \\ 20.756 \\ \hline \end{array}$	-
H 13	121.4	$\begin{gathered} 8.327 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.608 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.081 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.032 \\ \text { NA } \\ \hline \end{gathered}$	-	-	$\begin{array}{ll} \hline \mathrm{H} \delta_{2} & 7.025 \mathrm{NA} \\ \mathrm{H} \varepsilon_{1} & 8.023 \mathrm{NA} \\ \hline \end{array}$	55.989	30.302	-	NA
H 14	120.6	$\begin{gathered} 8.268 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 4.567 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 3.115 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 2.990 \\ \text { NA } \\ \hline \end{gathered}$	-	${ }^{-}$	$\begin{array}{ll} \mathrm{H}_{2} & 7.011 \mathrm{NA} \\ \mathrm{H}_{6} & 7.997 \mathrm{NA} \end{array}$	56.204	30.444	-	NA
Q 15	$\begin{gathered} 121.7 \\ \mathrm{~N} \varepsilon_{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.515 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{array}{r} 4.297 \\ 4.280 \\ \hline \end{array}$	$\begin{gathered} \mathbf{2 . 1 0 7} \\ \text { NA } \\ \hline \end{gathered}$	$\begin{gathered} 1.991 \\ \text { NA } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.357 \\ & 2.330 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 2.357 \\ 2.330 \\ \hline \end{array}$	$\begin{array}{lrl} \hline H \varepsilon_{21} & 7.648 & 7.689 \\ H \varepsilon_{22} & 6.968 & 6.879 \\ \hline \end{array}$	55.763	29.094	33.568	-
K 16	123.6	$\begin{gathered} \hline \mathbf{8 . 5 5 1} \\ \text { NA } \\ \hline \end{gathered}$	4.261 4.241	1.856 1.848	1.778 1.768	$\begin{aligned} & \hline 1.487 \\ & 1.474 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.433 \\ & 1.427 \\ & \hline \end{aligned}$	$\begin{array}{lll} \hline \text { H } \delta^{*} & 1.686 & 1.666 \\ \text { H } \varepsilon^{*} & 2.990 & 2.970 \\ \hline \end{array}$	56.060	32.914	24.859	$\begin{array}{lll} \hline \text { C } 28.917 \\ \text { C } \varepsilon 41.750 \\ \hline \end{array}$

Details of quantum-mechanical/molecular-mechanical calculations

The model ${ }^{1}$ of the structure of the complex $2 \mathrm{~A} \beta(11-14)-\mathrm{Zn}^{2+}$ described earlier was used to build the $2 \mathrm{pA} \beta(1-16)-\mathrm{Zn}^{+2}$ model, using the PyMol program (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.). The model was constructed in the parm99sb force field. ${ }^{\underline{2}}$ The model contained parameters corresponding to the geometry of a complex in which zinc atom is coordinated by the Glu11 and His14 residues of both peptides, and the pSer8 and His6 residues. The dimer was put into the center of a triclinic cell with the distance to the borders of $20 \AA$. Zinc coordination was modeled with corresponding distance restraint. Model was optimized in implicit solvent treatment in cyclic manner. Optimized conformation was subjected to MD simulation in explicit solvent for 100 ns . The GROMACS 4.6 software package ${ }^{3}$ was used for simulation and analysis of the trajectories. The simulations in explicit solvent were carried out at 300 K under the control of a velocity rescaling thermostat ${ }^{4}$ at constant pressure and using the PME 5 to take into account the electrostatic interactions. The cell was filled with TIP4P water ${ }^{6}$ and the negative charge of the system was compensated by sodium ions. The concentration of monovalent ions was set to 0.15 M . The most represented conformations around zinc cation near pSer8 over the last 10 ns of the trajectory were selected and their geometry was optimized using the QM/MM method as described by Biswas and Gogonea ${ }^{7}$. The QM system was described in terms of the plane-wave density functional theory (PWDFT) ${ }^{8}$ with a spin polarized formalism and PW91 ${ }^{9}$ functional. The interactions between valence electrons and the ionic cores are described by ultrasoft VDB pseudopotential. All atoms from His6, Asp7 and pSer8 were included in the QM system. QM/MM geometry optimization was performed with the GROMACS/CPMD package. Since we applied ultrasoft pseudopotentials, the basis set for the valence electrons consists of plane waves expanded up to a cutoff of 30 Ry . The QM subcell had a cubic shape with 40 Ry side length, resulting in about 90.000 plane waves for wavefunction.

References

1 S. A. Kozin, Y. V. Mezentsev, A. A. Kulikova, M. I. Indeykina, A. V. Golovin, A. S. Ivanov, P. O. Tsvetkov and A. A. Makarov, Mol Biosyst, 2011, 7, 1053-1055.

2 K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror and D. E. Shaw, Proteins, 2010, 78, 1950-1958.
3 S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess and E. Lindahl, Bioinformatics, 2013, 29, 845-854.

4 G. Bussi, D. Donadio and M. Parrinello, J. Chem. Phys., 2007, 126, 014101.
5 T. Darden, D. York and L. Pedersen, J. Chem. Phys., 1993, 98, 10089-10092.
6 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, 79, 926-935.
7 P. K. Biswas, J. Chem. Phys., 2005, 123, 164114.
8 M. M. Pant and Rajagopa.Ak, Solid State Commun, 1972, 10, 1157-1160.
9 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Physical review. B, Condensed matter, 1992, 46, 6671-6687.

