Studies of N⁹-arenthenyl purines as novel DFG-in and DFG-out dual Src/Abl inhibitors using 3D-QSAR, docking and molecular dynamics simulations

Shaojie Ma,^a Guohua Zeng,^a Danqing Fang,^b Juping Wang,^a Wenjuan Wu,*^a Wenguo Xie,^a Shepei Tan^a and Kangcheng Zheng^c

^a: Department of Physical Chemistry,College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China. E-mail: <u>wuwenjuan83@126.com</u>; Tel: +86 20 39352119

^b: Department of Cardiothoracic Surgery, Affiliated Second Hospital of Guangzhou Medical University, Guangzhou 510260, China

^c: School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Electronic Supplementary Information

Table of Contents

Supplementary tables (Table S1-S2)	S2-S8
Supplementary figure (Figures S1)	S9

No.	R ₁	- R ₂	R ₃	L	IC ₅₀ (nM) of DFG-in		No.	R_1	R ₂	R ₃	L	IC ₅₀ (nM) of DFG-out	
					Src	Abl						Src	Abl
1	CH ₃	N H	Isopropyl	Vinyl	1.78	5.93	25*	H ₃ C	^H ∕N CH₃	Н	Ethyliden e	300	96
2	CH ₃ H ₃ C	N H	Isopropyl	Vinyl	6.58	54.3	26	H ₃ C	^H ∕ ^N ∖CH₃	Н	Vinyl	52	25
3		N H	Isopropyl	Vinyl	31.8	73.3	27*	H ₃ C	_N.↓	Н	Vinyl	91	74
4		O P P P Pr	Isopropyl	Vinyl	376	626	28 [*]	H ₃ C	H N	Н	Vinyl	201	243
5*	CH ₃ H ₃ C	P-CH ₃	Н	Vinyl	8.31	3.58	29	H ₃ C	HZ Z	Н	Vinyl	9.3	26
6	CI H ₃ C	N CH3	Н	Vinyl	5.56	2.77	30	H ₃ C	H. N.	Н	Vinyl	4.7	9.9
7	CI	P-CH ₃	Н	Vinyl	126	69.4	31	H ₃ C	H N N N N N	Н	Vinyl	26	40

Table S1 Structures and experimental values of purine derivatives

 Table S1 (continued)
 IC₅₀(nM) of $IC_{50}(nM)$ of DFG-out DFG-in No. R_1 \mathbf{R}_2 R_3 L No. R_1 \mathbf{R}_2 R_3 L Src Abl Src Abl ĴNН 8 Η Vinyl 198 16.7 Vinyl 3.8 32 ö Η 5.7 Ö H₃C -CH₃ `N H CH3 ŇН CF₃ Η 17 33 $NH(CH_2)_3N(CH_3)_2$ Н 9 Vinyl 2.36 Vinyl 159 157 ö H₃C N H _N∖ −CH₃ CH₃ `CF₃ 10 Η Vinyl 0.46 0.46 34 Vinyl Η 11 23 H₃C Н CH_3 0 _H _N∖ -Pr 35 11 17.3 Vinyl Η 4 ő Η Vinyl 517 62 H₂(ĊH₃ H N CF3 **12**^{*} 36 17.6 NMe₂ Vinyl 3.74 Vinyl Η 86 236

Table S1 ((continued))
		,

No.	R ₁	R ₂	R ₃	L	IC ₅₀ (nM) of DFG-in		No.	R_1	R ₂	R ₃	L	IC ₅₀ (nM) of DFG-out	
					Src	Abl						Src	Abl
13	H ₃ C	N H CH3	1-Pyrroldine	Vinyl	1.43	19.5	37*	H ₃ C	, H.	Н	Vinyl	45	37
14 [*]	H ₃ C	N CH3	1-Morpholine	Vinyl	0.23	3.02	38	H ₃ C	, N	Н	Vinyl	4.8	59
15	H ₃ C	N CH3	-NN-CH3	Vinyl	0.23	6.8	39	H ₃ C	H ₃	Н	Vinyl	46	60
16 [*]	H ₃ C	P-CH ₃	1-Imidazole	Vinyl	0.46	1.63	40	H ₃ C N S	CH₃ CH₅ CH₃ N	Н	Vinyl	310	267
17	H ₃ C	P-CH ₃	OMe	Vinyl	0.46	1.8	41	H ₃ C	H ₃ /N	Н	Vinyl	6.6	23
18 [*]	H ₃ C	P-CH ₃	Isopropyl	Vinyl	0.46	7.32	42 [*]	H ₃ C H ₃ C N-N CH H ₃ C CH	H ₃ H ₃	Н	Vinyl	46	146

Table	S1 (continued))											
No.	R_1	\mathbf{R}_2	R ₃	L	IC ₅₀ (nM) of DFG-in		No.	R ₁	R_2	R ₃	L	IC ₅₀ (nM) of DFG-out	
					Src	Abl						Src	Abl
19	H ₃ C	N H CH3	OCH ₂ CH ₂ OMe	Vinyl	0.46	1.57	43	H ₃ C N CF ₃	∽ ^N √	Н	Vinyl	7.0	20
20	H ₃ C	NH NH NH NH NH NH NH NH NH NH NH NH NH N		Vinyl	0.46	0.46	44 *	H_3C H	, N , √	Н	Vinyl	7.6	25
21*	H ₃ C	H H O H CH ₃	3-PyO	Vinyl	0.46	0.5	45	H_3C	H.	Н	Vinyl	8.0	13
22	H ₃ C	NH OF CH3	Isopropyl	Vinyl	0.89	15.8	46	H ₃ C H N O CF ₃	, N	Н	Vinyl	33	72
23*	H ₃ C	N CH ₃	Cyclopentyl	Vinyl	1.29	32.3	47*	$\overset{H_3C}{\underset{O}{}}\overset{H_3C}{\underset{O}{\overset{O}{}}}\overset{H_3C}{\underset{O}{\overset{H_3C}{}}}\overset{H_3C}{\underset{O}{\overset{H_3C}{\overset{H_3C}{\overset{H_3C}{}}}}\overset{H_3C}{\underset{O}{\overset{H_3C}{\overset{H_{C}}{\overset{H_{C}{\overset{H_{C}}{\overset{H_{C}}{\overset{H_{C}}{\overset{H_{C}}{\overset{H_{C}}{\overset{H_{C}}{\overset{H_{C}}{\overset{H_{C}}{\overset{H_{C}}{\overset{H_{C}}{$	HN.	Н	Vinyl	41	24

Table	S1 (continued	<i>l</i>)												
No.	R ₁	R ₂	R ₃	L	IC ₅₀ (nM) of DFG-in		No.	R ₁	R ₂	R ₃	L	IC ₅₀ (nM) of DFG-out		
					Src	Abl						Src	Abl	
24	CH ₃ H ₃ C	N H CH3	NCCH ₂ CH ₂	Vinyl	0.46	0.46	48	H_3C H_3C H_1 H_2 H_3C H_3	Н	Н	Vinyl	84	48	
							49	H ₃ C N CF ₃	Н	Н	Vinyl	307	38	

*Compounds in the test set

			DFG	-in				DFG-out						
Na		Src			Abl		N		Src		Abl			
INO.	Actual pIC ₅₀	Pred. pIC ₅₀	Res.	Actual pIC ₅₀	Pred. pIC ₅₀	Res.	N0.	Actual pIC ₅₀	Pred. pIC ₅₀	Res.	Actual pIC ₅₀	Pred. pIC ₅₀	Res.	
						Trainir	ng set							
1	8.750	8.796	-0.046	8.227	8.222	0.005	26	7.284	7.232	0.052	7.602	7.586	0.016	
2	8.182	8.160	0.022	7.265	7.259	0.006	29	8.032	8.127	-0.095	7.585	7.597	-0.012	
3	7.498	7.477	0.021	7.134	7.137	-0.003	30	8.328	8.245	0.083	8.004	7.955	0.049	
4	6.425	6.443	-0.018	6.203	6.177	0.026	31	7.585	7.627	-0.042	7.398	7.373	0.025	
6	8.255	8.213	0.042	8.558	8.553	0.005	32	8.420	8.384	0.036	8.244	8.287	-0.043	
7	6.900	6.920	-0.020	7.159	7.235	-0.076	33	6.799	6.785	0.014	6.804	6.827	-0.023	
8	6.703	6.697	0.006	7.777	7.764	0.013	34	7.959	8.056	-0.097	7.638	7.595	0.043	
9	7.770	7.756	0.014	8.627	8.623	0.004	35	6.287	6.338	-0.051	7.208	7.208	0.000	
10	9.337	9.337	0.000	9.337	9.349	-0.012	36	7.066	7.061	0.005	6.627	6.649	-0.022	
11	8.398	8.415	-0.017	7.762	7.770	-0.008	38	8.319	8.350	-0.031	7.229	7.281	-0.052	
13	8.845	8.902	-0.057	7.710	7.616	0.094	39	7.337	7.359	-0.022	7.222	7.208	0.014	
15	9.638	9.669	-0.031	7.710	8.149	-0.439	40	6.509	6.474	0.035	6.573	6.559	0.014	
17	9.337	9.316	0.021	8.745	8.761	-0.016	41	8.180	8.169	0.011	7.638	7.624	0.014	
19	9.337	9.352	-0.015	8.804	8.814	-0.010	43	8.155	8.104	0.051	7.699	7.690	0.009	
20	9.337	9.301	0.036	9.337	9.319	0.018	45	8.097	8.082	0.015	7.886	7.913	-0.027	
22	9.051	9.035	0.016	7.801	7.883	-0.082	46	7.481	7.458	0.023	7.143	7.116	0.027	
24	9.337	9.310	0.027	9.337	9.320	0.017	48	7.076	7.045	0.031	7.319	7.312	0.007	
							49	6.513	6.532	-0.019	7.420	7.457	-0.037	
						Test	set							
5	8.080	7.605	0.475	8.446	8.542	-0.096	25	6.523	6.937	-0.414	7.018	6.846	0.172	

Table S2 The actual pIC_{50} , predicted pIC_{50} and their residuals of the studied compounds for CoMFA analyses

	· /		DFG-	in				DFG-out						
No.		Src		Abl			NT	Src				Abl		
	Actual pIC ₅₀	Pred. pIC ₅₀	Res.	Actual pIC ₅₀	Pred. pIC ₅₀	Res.	110.	Actual pIC ₅₀	Pred. pIC ₅₀	Res.	Actual pIC ₅₀	Pred. pIC ₅₀	Res.	
12	8.427	8.774	-0.347	7.754	7.965	-0.211	27	7.041	7.347	-0.306	7.131	7.515	-0.384	
14	9.638	9.265	0.373	8.520	8.112	0.408	28	6.697	7.388	-0.691	6.614	7.025	-0.411	
16	9.337	9.693	-0.356	8.788	8.892	-0.104	37	7.347	7.145	0.202	7.432	7.591	-0.159	
18	9.337	8.740	0.597	8.135	8.303	-0.168	42	7.337	7.062	0.275	6.836	6.907	-0.071	
21	9.337	9.200	0.137	9.301	8.692	0.609	44	8.119	8.338	-0.219	7.602	7.364	0.238	
23	8.889	8.697	0.192	7.491	8.021	-0.530	47	7.387	7.443	-0.056	7.620	7.385	0.235	

 Table S2 (continued)

Fig.S1 Superimposition of the average structure from the last 2 ns of the MD simulation (magenta) and the initial structure (yellow). (A) 4-2BDJ complex, (B) 20-2BDJ complex, (C) 4-3KF4 complex, (D) 20-3KF4 complex, (E) 32-3G6H complex, (F) 40-3G6H complex, (G) 32-3KFA complex, (H) 40-3KFA complex.