Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Alpha-synuclein Oligomers and Fibrils may originate in Two Distinct Conformer Pools: A Small Angle X-ray Scattering and Ensemble Optimisation Modelling Study

Cyril C. Curtain^{1,2}, Nigel Kirby³, Kevin J. Barnham^{1,2}, Robert B. Knott⁴, Colin L. Masters², Roberto

Cappai¹, Agata Rekas⁴, Vijaya B. Kench² and Timothy M. Ryan²

¹Department of Pathology and Bio21 Molecular Science and Technology Institute, The University of

Melbourne, Victoria 3010, Australia.

²*The University of Melbourne, Florey Institute of Neuroscience and Mental Health, Victoria 3010,*

Australia.

³ SAXS/WAXS Beamline, The Australian Synchrotron, Clayton, Victoria 3168, Australia

⁴Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia.

Table S1

Parameters derived from ensemble optimisation modelling using Advanced EOM 2.0* for wild-type and mutant α -syn in the absence and presence of Cu²⁺ and the anti-fibril agent VK7

Protein	Average R_g Å of	Average D _{max} Å of	χ
	ensemble	ensemble	
Wild-type	44.34	129.13	1.1
A30P	28.30	84.69	0.94
E46K	39.46	115.23	0.93
A53T	41.75	124.16	1.1
Wild-type + Cu^{2+}	28.81	79.94	1.2
A30P + Cu^2	26.88	81.06	1.2
$A53T + Cu^2$	34.03	101.85	0.97
4M4A**	37.97	111.26	1.1
$4M4A + Cu^2$	25.52	75.48	1.1
Wild-type + VK7	36.00	106.49	1.2

*Each run generated 1000 ensembles and fitted 50 curves

**The M1A/M5A/M116A/M127A substituted protein

Figure S1

Scattering profiles of wild type α -syn taken across size-exclusion elution absorbance peak to illustrate need to examine each individual profile.

Figure S2

Plots of intensity at q=0 (I_0) against concentration of protein (millimolar) as estimated from the 280 nm absorption of the SEC peak. Each point is a 2.1 sec snapshot.

Figure S3

Gaussian deconvolutions and cut-offs of R_g distributions for WT and mutant α -syn in buffer, + Cu²⁺ and WT + VK7

Figures S4

S4(I) A, Fitted scattering profile of wild-type α -syn; B, Kratky plot; C, D_{max} distribution; D, SE column elution profile; E, Guinier plot.

S4 (II) A, Fitted scattering profile of A30P mutant α -syn; B, Kratky plot; C, D_{max} distribution; D, SE column elution profile; E, Guinier plot.

S4 (III) A, Fitted scattering profile of E46K mutant α -syn; B, Kratky plot; C, D_{max} distribution; D, SE column elution profile; E, Guinier plot.

S4 (IV) A, Fitted scattering profile of A53T mutant α -syn; B, Kratky plot; C, D_{max} distribution; D, SE column elution profile; E, Guinier plot.

Figures S5

S5 (I) A, Fitted scattering profile of wild type α -syn + Cu²⁺; B, Kratky plot; C, D_{max} distribution; D, SE column elution profile; E, Guinier plot.

S5 (II) A, Fitted scattering profile of A30P mutant α -syn + Cu²⁺; B, Kratky plot; C, D_{max} distribution; D, SE column elution profile; E, Guinier plot.

Figures S6

S6 (I) A, Fitted scattering profile of M1A/M5A/M116A/M127A substituted α -syn; B, Kratky plot; C, D_{max} distribution; D, SE column elution profile; E, Guinier plot.

