ELECTRONIC SUPPORTING INFORMATION

Dual Input DNA-Based Molecular Switch

Irina V. Nesterova,* Siddieg O. Elsiddieg, Evgueni E. Nesterov

Table of Contents

Materials	S2	
Experimental Procedures		
pH denaturation studies via Circular Dichroism (CD)	S2	
pH denaturation studies via UV spectroscopy	S2	
Thermal denaturation studies via UV spectroscopy	S3	
Polyacrylamide Gel Electrophoresis	S3	
Fluorescence experiments	S4	
SI References	S5	
Table S1	S6	

Materials

All the chemicals of "Reagent" grade or above were obtained from established commercial suppliers (e.g. Sigma-Aldrich (St. Louis, MO), VWR/Alfa Aesar (West Chester, PA), and others) and were used as received unless otherwise noted. Nuclease-free water (Promega, Madison, WI) was used for all sample preparation involving DNA. In-house DI water was used for preparation of buffers for PAGE experiments. Sodium phosphate (20 mM)/potassium chloride (100mM) buffers for pH-dependent CD measurements were prepared in house. Bst large fragment polymerase, dNTPs, BSA, 50-bp DNA ladder, NEBuffer 1 (NEB 1, 10 mM Bis-Tris-Propane-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, pH 7.0) and NEBuffer 2 (NEB 2, 50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM Dithiothreitol, pH 7.9) were obtained from New England Biolabs (Ipswich, MA). Acrylamide/Bis 29:1 (30%) was purchased from BioRad. Bromphenol blue gel loading buffer was obtained from Sigma-Aldrich (St. Louis, MO). Single stranded DNAs (sequences included in Table S1) were obtained from IDT (Coralville, IA) and reconstituted with nuclease-free water. SYBR Green I and SYBR Gold were obtained from Invitrogen (Carlsbad, CA).

Experimental procedures

pH denaturation studies via Circular Dichroism (CD)

CD experiments were conducted using a J-815 Circular Dichroism Spectrometer (Jasco, Easton, MD) equipped with a Peltier-based thermostatted sample compartment.

Samples containing I_i (at ~ 3×10⁻⁶ M) were prepared in appropriate phosphate buffers, heated at 95°C for 10 minutes, slowly (overnight) cooled to room temperature. Three scans for each sample were recorded using a 0.1 cm optical path cuvette, averaged, and corrected for a corresponding buffer blank. The i-motif formation was monitored at 290 nm where C-quadruplexes are responsible for a characteristic positive band, while single stranded fragments are characterized by a positive band at 260-280 nm.¹

pH Denaturation studies via UV spectroscopy

pH Denaturation studies via UV spectroscopy were performed using a Cary 5000 UV-Vis-NIR spectrophotometer (Agilent Technologies, Santa Clara, CA). Typically, measurements were performed on a 500- μ L aliquot of a 0.5-1.0 μ M sample (prepared as described above for CD-based measurements) using a 10 mm optical path cuvette. The i-motif transformations were monitored at 295 nm where C-quadruplex unfolding is accompanied by the hypochromic effect.² The measurements were taken at room temperature and corrected against corresponding blank buffers.

Thermal denaturation studies via UV spectroscopy

The thermal denaturation studies were conducted as described by us before.³ Briefly, the samples containing approx. 500 nM of I_i were equilibrated at 80°C for 30 minutes before beginning a cooling cycle. Upon completion of the cooling cycle, the samples were stored overnight at 5°C (refrigerated) and, on the next morning, equilibrated to the lowest temperature of the temperature range evaluated (12-15°C) in a sample compartment of a spectrometer for 30 min before heating cycle began. Temperature gradients of 0.2°C min⁻¹ were used. Concentrations used for the denaturation studies (~500 nM) were below the range in which monomolecular folded hairpin (1 μ M-1 mM)⁴ or i-motif (2-10 μ M)⁵ have been demonstrated. Cary 5000 UV-Vis-NIR spectrophotometer (Agilent Technologies, Santa Clara, CA) equipped with a Cary Dual Cell Peltier Accessory (Varian, Palo Alto, CA) was utilized. The measurements were taken every 1°C. The differential spectra (obtained by subtraction of sample spectrum

obtained at the lowest temperature $(15^{\circ}C)$ from the spectrum obtained at the highest temperature $(80^{\circ}C)$) were evaluated to derive the best wavelength for a conformation change monitoring. Changes at 295 nm are exclusively indicative of i-motif opening. Those observations agree well with literature.⁶

Polyacrylamide Gel Electrophoresis

А 50 µL sample containing one of the oligonucleotides \mathbf{p} , \mathbf{I}_{h} , \mathbf{I}_{i} or \mathbf{I}_{s} (28 nM) in NEB 1 or NEB 2 was prepared by heating the solution at 95°C for 10 minutes followed by slow (overnight) cooling to room temperature. After addition of BSA (to yield 100 µg/mL), dNTP mixture (to yield 400 µM each), and DNA template II (final concentration of 28 nM) the resulting solution was incubated at 37°C for 600 seconds in a VWR dry block heater (West Chester, PA). Following the incubation. 0.4 unit of Bst large fragment polymerase was added to the sample and reaction

Figure S1. Raw image of a non-denaturing polyacrylamide gel demonstrating: (i) separation between single-stranded template II (TII) and double-stranded product III (PIII) (Lines 1, 2, 8, 9) and (ii) no interference from potential self-primed extension of **p** (lines 7 and 14), I_h (lines 6 and 13), I_s (lines 5 and 12), I_i (lines 4 and 11) and TII (lines 3 and 10). Non-denaturing PAGE (12%) separations of reactions conducted in NEB 1 (Lines 1-7) and NEB 2 (lines 8-14) were performed using conditions described in the SI text. A 50-bp DNA ladder was analyzed in line L. Polymerase extension reactions containing I_s and TII (lines 1 and 8) and primer **p** and **TII** (lines 2 and 9) were included to provide markers for corresponding extension products. Note, that PAGE conditions necessary to separate TII and PIII do not allow detecting short strands I_h and p (lines 6, 7, 13, 14) on the same gel, however, no interferences at the area of expected PIII migration and no self-primed extension are intended goals of analyzing the samples. All the sequences are included in Table S1.

was allowed to proceed for 1200 seconds at 37°C. After the appropriate time, the reaction was quenched by adding 8 μ L of gel loading buffer and immediate cooling to 0°C (on ice). The samples were kept refrigerated until ready for electrophoresis. A 12 μ L aliquot of the reaction mixture was injected on the gel.

12% non-denaturing polyacrylamide gel electrophoresis (PAGE) experiments were carried out using Vertical Gel Electrophoresis System (VWR, West Chester, PA). The separation was performed in $0.5 \times TBE$ at room temperature at ~ 15 V cm⁻¹ for 2 hours. The 12 % gels ($0.5 \times TBE$) were prepared in house with Acrylamide/Bis 29:1, Ammonium Persulfate and TEMED using standard protocols and were stained post-separation with SYBR Gold for 30 minutes. Stained gels were imaged on a Typhoon 9410 scanner (GE, Fairfield, CT) using a 488 nm laser for excitation and a 555±20 nm filter for signal collection.

A representative gel image demonstrating (1) separation of reaction product III (PIII) and template II (TII), and (2) non-interference from potential self-primed extension products of template II, \mathbf{p} , \mathbf{I}_i , \mathbf{I}_s and \mathbf{I}_h is included in Figure S1.

Fluorescence experiments

Figure S2. Emission (525 nm) of SYBR Green I in a sample containing oligonucleotide **p**, BSA, dNTPs, DNA template **II** in NEB 1 before and after addition of Bst polymerase (at 600 sec). Increase in emission after addition of Bst is caused by the enhanced sensitivity of SYBR Green I towards double stranded polymerase extension product formed.

Time-based fluorescence measurements were carried out with a QuantaMaster4/2006SE spectrofluorimeter (PTI, Birmingham, NJ) equipped with a temperature-controlled cuvette holder. A 60 μ L sample containing either **p**, **I**_h, **I**_i or **I**_s (28 nM) in NEB 1 or NEB 2 was prepared by heating the solution at 95°C for 10 minutes followed by slow (overnight) cooling down to room temperature. After addition of BSA (to yield 100 μ g/mL), dNTP mixture (to yield 400 μ M each), DNA template **II** (final concentration of 28 nM) and SYBR Green I (to yield 0.05×), a 50 μ L aliquot of the resulting mixture was transferred into an appropriate fluorescence cuvette and equilibrated for 600 seconds at 37°C in the thermocontrolled cuvette holder of the spectrofluorimeter. Emission at 525 nm (excitation at 497 nm) was monitored during the time to ensure a stable baseline. The last 120 seconds of the stabilized baseline were averaged to obtain (after normalization) the **"Bst–"**

value (Figure 3 in the main text). Post equilibration, 0.4 unit of Bst large fragment polymerase was added to the cuvette and a 525-nm emission monitoring was continued for 1200 seconds. The last 120 seconds

of the measurements were averaged to obtain the **"Bst+"** value (Figure 3 in the main text). An example of emission monitoring graph is presented in Figure S2.

SI References

- (1) (a) Kypr, J.; Kejnovská, I.; Renčiuk, D.; Vorlíčková, M. *Nucleic Acids Res.* 2009, *37*, 1713-1725; (b) Manzini, G.; Yathindra, N.; Xodo, L. E. *Nucleic Acids Res.* 1994, *22*, 4634-4640; (c) Völker, J.; Klump, H. H.; Breslauer, K. J. *Biopolymers* 2007, *86*, 136-147.
- (2) Mergny, J. L.; Lacroix, L. Nucleic Acids Res. 1998, 26, 4797-4803.
- (3) Nesterova, I. V.; Elsiddieg, S. O.; Nesterov, E. E. J. Phys. Chem. B 2013, 117, 10115-10121.
- (4) Senior, M. M.; Jones, R. A.; Breslauer, K. J. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 6242-6246.
- (5) Mergny, J. L.; Lacroix, L.; Han, X. G.; Leroy, J. L.; Hélène, C. J. Am. Chem. Soc. 1995, 117, 8887-8898.
- (6) (a) Mergny, J. L.; Lacroix, L. Oligonucleotides 2003, 13, 515-537; (b) Mergny, J.-L.; Li, J.; Lacroix, L.; Amrane, S.; Chaires, J. B. Nucleic Acids Res. 2005, 33, e138.

Designation	Sequence 5'-	→3′ ^b						
I	CTG CAG AAA ACC CCC TTT CCC CCT TTC CCC CTT TCC CCC CAT GCC TGC AG							
		\sim						
	1*	3		2		la	1	
р	CAT GCC T	TGC AG						
	la	1						
I _h		AAA ACA TGC (CTG CAG					
	1*	3 1a	1					
I _s	CTG CAG	AA ACA TTG A	ACC TTG GA	AA CTG ATA	GAA AAG AAG	CAT GC	C TGC AG	
	1*	3		2a		1a	1	
Template II (TII)	GAA ACA (CTA GAG 1	GCT ATG ACC	ATG ATT A	CG AAT TC CA AGC TT(G AGC TCG GT G GCA CTG GC(A CCC GO C GTC GT	GG GAT CCT T TTA C	
		1*	1a*					