Synthesis and Protein Kinase C (PKC)-C1 Domain Binding Properties

of Diacyltetrol Based Anionic Lipids

Narsimha Mamidi,[‡] Subhankar Panda,[‡] Rituparna Borah and Debasis Manna*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039,

India.

Fax: (+) 91-361 258 2349; Tel: (+) 91-361 258 2325; E-mail: dmanna@iitg.ernet.in

Table of Content

Sl. No	Content	Page
(I)	Representative quenching plot of PKCδ-C1b fluorescence by	S2
	ligand.	
(II)	Binding isotherms of ligands with PKCδ-C1b.	S2
(III)	Anisotropy values of the ligands in the presence and absence of	
	the PKC δ , PKC θ and PKC α C1b/a proteins at room temperature.	
(IV)	Representative protein-to-membrane FRET experiment under	S3
	liposomal environment.	
(V)	Structure of ligand bound PKCδ-C1b subdomain (PDB: 1PTR).	S4
(VI)	Theoretical binding energy calculation and distribution of DAT-	S4
	PA ₈ between the DAG/phorbol ester-binding site (I) and anionic	
	lipid-binding site (II) of the PKCδ-C1b subdomain (1PTR).	
(VII)	¹ H NMR and ¹³ C NMR Spectra of the New Compounds.	S5-S16
(VIII)	³¹ P NMR Spectra of the New Compounds	S17-S19
(IX)	HRMS Spectra of the New Compounds	S20-S25

Figure S1: Representative quenching plot of PKC δ -C1b fluorescence by ligand. Addition of increased concentration of DAT-PS₈ (0-58 μ M) to PKC δ C1b (1 μ M) quenched the intrinsic fluorescence intensity.

Figure S2: Binding isotherms of ligands with PKC δ -C1b. Representative plot of fluorescence intensity of PKC δ -C1b (1 μ M) in buffer (20 mM Tris, 160 mM NaCl, 50 μ M ZnSO₄, pH 7.4) in the presence of varying concentration of DAG₈, DAT-1b, DAT-PS₈, DAT-PA₈ and DAT-PG₈, where F and F₀ are fluorescence intensity in the presence and absence of the ligands, respectively. The solid lines are nonlinear least squares best fit curves.

Compound	PKCô C1b	РКСӨ С1ь	PKCa C1a
buffer ^b	0.0746 (0.0007)	0.0682 (0.0222)	0.0522 (0.0071)
DAG_8^c	0.2493 (0.0616)	0.3372 (0.0774)	0.1669 (0.0222)
DAT-1b ^c	0.3606 (0.0322)	0.3611 (0.0997)	0.4517 (0.0734)
DAT-PS ₈ ^c	0.4435 (0.0634)	0.4356 (0.0736)	0.3065 (0.0109)
DAT-PA ₈ ^c	0.2862 (0.0613)	0.4888 (0.0871)	0.3321 (0.0904)
DAT-PG ₈ ^c	0.3670 (0.0476)	0.3381 (0.1314)	0.2608 (0.0421)
DAG_{16}^{c}	0.2737 (0.0630)	0.3993 (0.0814)	0.1958 (0.0188)
DAT-1a ^c	0.2953 (0.0786)	0.4413 (0.0758)	0.3802 (0.0165)
$DAT-PS_{16}^{c}$	0.3509 (0.0761)	0.4525 (0.0914)	0.3417 (0.0075)
$DAT-PA_{16}^{c}$	0.2828 (0.0694)	0.4713 (0.0631)	0.2843 (0.0887)
DAT-PG ₁₆ ^c	0.2773 (0.0304)	0.3282 (0.0620)	0.3542 (0.0571)
$DAT-PS_{18}^{c}$	0.4341 (0.0126)	0.5147 (0.0357)	0.5730 (0.0166)
DAT-PA ₁₈ ^c	0.5664 (0.0368)	0.5038 (0.0648)	0.6770 (0.0469)
DAT-PG ₁₈ ^c	0.3856 (0.0475)	0.3827 (0.0821)	0.3841 (0.0407)

Table S1. Anisotropy^{*a*} values of the ligands in the presence and absence of the PKC δ , PKC θ and PKC α C1b/a proteins at room temperature.

^{*a*})Values in parenthesis indicate standard deviations.

^{b)}Protein, 1 µM in buffer (20 mM Tris, 160 mM NaCl, 50 µM ZnSO₄, pH 7.4).

^{c)}Ligands, 10 µM; protein, 1 µM in buffer (20 mM Tris, 160 mM NaCl, 50 µM ZnSO₄, pH 7.4)

Figure S3: Representative protein-to-membrane FRET experiment under liposomal environment. Addition of increased concentration of compound DAG₈ (0 - 80 μ M) to PKC δ C1b subdomain (1 μ M) bound to the active liposome (PC/PE/dPE/DAT-PS₁₆ (75/15/5/5)) decreases the FRET signal at 505 nm. All the measurements were performed in 20 mM Tris, pH 7.4 containing 160 mM NaCl and 50 μ M ZnSO₄.

Figure S4: Structure of ligand bound PKC δ -C1b subdomain (PDB: 1PTR). (A) Modeled structures of DAT-PA₈ (A), DAT-PS₈ (B) and DAT-PG₈ (C) docked into PKC δ -C1b subdomain. The modeled structures were generated using Molegro Virtual Docker, version 4.3.0.

Figure S5: Theoretical binding energy calculation and distribution of DAT-PA₈ between the DAG/phorbol ester-binding site (I) and anionic lipid-binding site (II) of the PKC δ -C1b subdomain (1PTR).

Figure S6. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 5.

Figure S7. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 6.

Figure S8. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 7.

Figure S9. ¹H NMR (A) and ¹³C NMR (B) spectra of DAT-PA₈.

Figure S10. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 13.

Figure S11. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 14.

Figure S12. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 15.

Figure S13. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 16.

Figure S14. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 17.

Figure S15. ¹H NMR (A) and ¹³C NMR (B) spectra of DAT-PS₈.

Figure S16. ¹H NMR (A) and ¹³C NMR (B) spectra of compound 18.

Figure S17. ¹H NMR (A) and ¹³C NMR (B) spectra of DAT-PG₈.

Figure S18. ³¹P NMR spectra of compound 5, 6, and 7.

Figure S19. ³¹P NMR spectra of compound DAT-PA₈, 17, and DAT-PS₈.

Figure S20. ³¹P NMR spectra of compound 18 and DAT-PG₈.

HRMS Spectra of the New Compounds

Figure S21. HRMS spectra of compound 5 and 6.

Figure S22. HRMS spectra of compound 7 and DAT-PA₈.

Figure S23. HRMS spectra of compound 13 and 14.

Figure S24. HRMS spectra of compound 15 and 16.

Figure S25. HRMS spectra of compound 17 and DAT-PS_{8.}

Figure S26. HRMS spectra of compound 18 and DAT-PG_{8.}